
ETH Library

Real-Time Learning-Based
Model Predictive Control: Online
Algorithms and Applications in
Energy Systems

Master Thesis

Author(s):
Aoife, Henry

Publication date:
2021-03

Permanent link:
https://doi.org/10.3929/ethz-b-000524283

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000524283
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Aoife Henry

Real-Time Learning-Based Model

Predictive Control:

Online Algorithms and Applications

in Energy Systems

Master Thesis

Automatic Control Laboratory
Swiss Federal Institute of Technology (ETH) Zurich

Systems & Control
University of Colorado Boulder

Supervision

Prof. Emiliano Dall’Anese, Systems & Control, University of Colorado Boulder
Prof. Florian Dörfler, Automatic Control Laboratory, ETH Zürich

March 2021

Acknowledgment

I would like to sincerely thank my supervisor at CU Boulder, Prof. Emiliano Dall’Anese, for
his willingness to offer me such an interesting project, for his efforts to make me feel welcome
despite the circumstances, for facilitating my stay in Boulder through the CU Europe-Colorado
Mobility Program and for his unwavering support throughout the process - both in academic
matters concerning my thesis and beyond. I would also like to thank Ana Ospina for the time and
attention she committed to help me to solve issues and to review my thesis and presentation. I’d
like to thank Prof. Florian Dörfler for facilitating me to conduct my Master Thesis overseas and
for his advising. I am grateful also to Marina Gonzalez and Michael Koller at EKZ for allowing
me to use company battery data. Finally, I’d like to thank my aunt, Lolo, for the encouragement,
for the tea conversations, for the five-star vegan food and for being a dependable, supportive and
close family member and friend to reach out to during my stay in the US.

i

Abstract

The increased availability of sensing and computational capabilities in modern cyber-physical sys-
tems and networked systems has led to a growing interest in learning and data-driven control
techniques. Learning-Based Model Predictive Control (LBMPC), i.e. the integration of learning
methods in Model Predictive Control schemes, is one technique with potential applications for the
control of dynamical systems under uncertain and stochastic conditions including humans in the
control loop. In real-time applications of LBMPC, control solutions must be achieved in limited
time, given the computational burden of both the function-learning and control mechanisms. Fur-
thermore, models and functions associated with users must be learned on the fly from possibly
parsimonious feedback. In this work, a framework is proposed for a LBMPC scheme in which
little or no prior information is known regarding the dynamic state functions of multiple devices
and the cost functions modeling satisfaction, comfort or sense of safety of users interacting with
these devices. Gaussian Processes are advocated as a non-parametric nonlinear function modeling
technique to enable a low sampling rate for black-box dynamic state and dissatisfaction functions.
A regularized primal-dual gradient-based optimization algorithm is adapted to the discrete-time
case and integrated with the LBMPC framework to facilitate convergence in a real-time setting
with a Q-linear tracking error.

Considering the rapidly-evolving demands on the power grid as a result of increas-
ing distributed energy resources, the proposed methodology is implemented for a typical Demand
Response application, in which the power setpoints of a network of black-box thermostatically-
controlled loads in a building are optimized to provide ancillary services to the grid under fluctuat-
ing power demands while minimizing costs incurred to the black-box users inhabiting the building.
The methodology is also applied to the classic inverted pendulum problem for the purposes of
comparing results across true and GP-learned dynamic state and cost functions.

iii

Contents

Abstract iii

Nomenclature ix

1 Introduction & Literature Review 1

1.1 Problem Statement & Applications . 1
1.1.1 Real-Time MPC with Unknown Cost & Dynamic State Functions 1
1.1.2 Applications to the Optimization of Energy Systems 3

1.2 Literature Review . 3
1.2.1 Networked & Multiuser Dynamical Systems 3
1.2.2 Real-Time Learning of Black-Box Functions 5
1.2.3 Real-Time Model Predictive Control . 6
1.2.4 Learning-Based Control Schemes . 6
1.2.5 Online Primal-Dual Gradient Descent Optimization Methods 7
1.2.6 Modeling & Control of Thermostatically-Controlled Loads 8

1.3 Challenges . 8
1.4 Contributions . 8
1.5 Thesis Structure . 9

2 Gaussian Processes 11

2.1 Bayesian Optimization . 11
2.2 Gaussian Distributions . 12
2.3 Gaussian Processes . 13
2.4 Covariance Function . 14
2.5 Hyperparameter Selection . 15
2.6 Bayes’ Theorem & Gaussian Processes . 16
2.7 Predicting Outputs with Noise-Free Observations 17
2.8 Predicting Outputs with Noisy Observations . 17
2.9 Measuring the Performance of a GP Prediction . 18
2.10 Computing the First-Order Derivative of the Posterior Mean 18

2.10.1 Finite-Difference Method . 18
2.10.2 Closed-Form First-Order Derivative of the Posterior Mean 19

2.11 Reproducing Kernel Hilbert Spaces . 19
2.12 Gaussian Processes for Dynamic State Functions 20
2.13 Gaussian Processes for Cost Functions . 21
2.14 Integrating GP Models with the MPC Scheme . 22

3 Model Predictive Control with Gaussian Process Regression 25

3.1 Discrete-Time Model Predictive Control . 25
3.2 Regularized Lagrangian Primal-Dual Gradient Optimization 29

3.2.1 Strong Convexity . 29
3.2.2 The Gradient Method . 30
3.2.3 The Projected Gradient Method . 30

v

3.2.4 The Dual Problem . 31
3.2.5 Regularized Lagrangian Function . 34
3.2.6 Primal-Dual Gradient Method . 34

3.3 Online Regularized Lagrangian Primal-Dual Gradient Optimization 36
3.3.1 Tracking Error . 36
3.3.2 Warm-Starting . 40

3.4 Sampling Timeline . 40

4 Application to Real-Time Optimization of Energy Systems 43

4.1 System Model . 43
4.1.1 Thermostatically-Controlled Load . 44
4.1.2 Network . 46

4.2 MPC Optimal Control Problem . 48
4.3 Results of GP Predictions . 51

4.3.1 TCL State Variation . 52
4.3.2 TCL Stage Cost . 53

4.4 Results of MPC Simulations . 54

5 Conclusions 65

5.1 Gaussian Process-Learned Functions . 65
5.2 MPC Schemes with GP-Learned Functions . 66
5.3 Recommendations for Further Work . 67

A Additional Application to an Inverted Pendulum System 69

A.1 System Model . 69
A.2 Results of GP Predictions . 70

A.2.1 State Variation GP Predictions . 70
A.2.2 Cost GP Prediction . 71

A.3 Results of MPC Simulations . 72

B Mathematical Background 79

B.1 Probability & Probability Density . 79
B.2 Joint, Marginal & Conditional Probability . 79
B.3 Bayes’ Theorem . 80
B.4 Gaussian Identities . 80
B.5 Convex Sets . 81
B.6 Compact Sets . 81
B.7 Mean Square Continuity & Differentiability . 81

C Optimization Theory 83

C.1 Convex Functions . 83
C.2 Convex Optimization Problems . 83
C.3 Karush-Kuhn Tucker (KKT) Optimality Conditions 83
C.4 Order of Convergence & Rate of Convergence . 84
C.5 Regret . 85

D System & Control Theory 87

D.1 Controllability, Observability & Stabilizability of a System 87
D.2 Discretizing a Nonlinear Continuous Dynamical System 87

D.2.1 First-Order Taylor Series Discretization . 88
D.2.2 Runge-Kutte Discretization . 88

D.3 Jensen’s Inequality . 88
D.4 Game Theory . 88

D.4.1 Stackelberg Game . 88
D.4.2 Social Welfare Problem . 88

D.4.3 Multi-Armed Bandit Problem . 88
D.5 Tikhonov Regularization . 89

Nomenclature

Symbols

Chapter 1

u?
0 Optimal Control Input for k = 0 [�]

w Exogenous Disturbance/Process Noise [�]
x0 Initial System State [�]
n Measurement Noise [�]
ŷ Noisy Measurement [�]
x̃1 Estimated System State [�]

Chapter 2

M Prior Model of Unknown Function [�]
E Observed Evidence on Unknown Function [�]
Ntr,0 2 N Initial Number of Training Samples [�]
Ntr 2 N Number of Training Samples [�]
N⇤ 2 N Number of Test Samples [�]
�t

d
l 2 R++ Stage Cost GP Sample Time for user d [s]

�t
d
x 2 R++ State Variation GP Sample Time for device d [s]

ny 2 N Number of Outputs [�]
nx 2 N Number of States [�]
nu 2 N Number of Inputs [�]
nw 2 N Number of Disturbances [�]
X 2 RNtr⇥nx Training Inputs [�]
X⇤ 2 RN⇤⇥nx Test Inputs [�]
K Covariance Matrix [�]
f or f(x) True/Latent Function Values [�]
f⇤ or f(X⇤) 2 RN⇤ Test Function Values [�]
y 2 RNtr Output/Target values [�]
µ Mean Vector [�]
N Gaussian/Normal Probability Distribution [�]
�
2 2 R++ Output Variance [�]

l 2 Rnx
++ Characteristic Length Scale [�]

�
2
n 2 R+ Measurement Noise [�]

✓ 2 R1+nx Hyperparameter Vector [�]
RSS 2 R Residual Sum of Squares [�]
TSS 2 R Total Sum of Squares [�]

ix

ScoreGP 2 R GP Score [�]
� 2 R++ Infinitesimal Difference [�]
H Hilbert Space [�]
Hk Reproducing Kernel Hilbert Space of Kernel k [�]
f
d
i i

th Dynamic State Function of Device d [�]
h
d
i Prior Component of ith Dynamic State Function of Device d [�]

m
d
i Prior Component of Cost Function of User d [�]

g
d
i Learned Component of ith Dynamic State Function of Device d [�]
j
d
i Learned Component of Cost Function of User d [�]
n
d
x Number of States of Device d [�]

n
d
u Number of Control Inputs of Device d [�]

n
d
w Number of Exogenous Disturbances of Device d [�]

xd
k 2 Rnd

x State Vector of Device d at Time-Step k [�]
x̃
d
i,k 2 Rnd

x i
th Measured State of Device d at Time-Step k [�]

l̃
d
k 2 R Measured User Dissatisfaction of Device d at Time-Step k [�]
 Measurement Gaussian Noise [�]

Chapter 3

k 2 N Sample Number [�]
t 2 N Continuous Time Variable [�]
N 2 N Length of MPC Horizon [�]
T 2 N Number of Simulation Time-Steps [�]
�t 2 R++ Discrete MPC Sample Time [s]
ud
k 2 Rnd

u State Vector of Device d at Time-Step k [�]
wd

k 2 Rnd
w State Vector of Device d at Time-Step k [�]

zdk 2 Rnd
x+nd

u+nd
w State, Input and Disturbance Vector of Device d at Time-Step k [�]

Z
d 2 RNtr⇥(nd

x+nd
u+nd

w) State Vector, Inputs and Disturbances of Device d at Time-Step k [�]
Xk ✓ Rnd

x Feasible Set of States at Stage k [�]
Xf ✓ Rnd

x Terminal Feasible Set of States [�]
Uk ✓ Rnd

u Feasible Set of Control Inputs at Stage k [�]
n
0
g 2 N Number of Explicit Inequality Constraints of the System at each Stage [�]

n
d
g 2 N Number of Explicit Inequality Constraints of Device d at each Stage [�]

ng :=
PD

d=1 n
d
g 2 N Number of Explicit Inequality Constraints of all Devices at each Stage [�]

g0 : RNny 7! RNn0
g Explicit Inequality Constraints of the System [�]

gd : RNnd
x 7! RNnd

g Explicit Inequality Constraints of Device d [�]
G : RN(nx+ny) 7! RN(n0

g+ng) All Explicit Inequality Constraints [�]
F : RN(nx+nu) 7! RNnx All Dynamic State Equality Constraints [�]
E Euclidean Set [�]
↵⌧ Gradient Method Primal Stepsize [�]
⌘⌧ Gradient Method Inequality Dual Stepsize [�]
✏⌧ Gradient Method Equality Dual Stepsize [�]
⌫ Gradient Method Tolerance Parameter [�]
r Gradient Operator [�]
r2 Hessian Operator [�]

Jf Jacobian Matrix for Function f [�]
NC Normal Cone [�]
P Projection Operator [�]
I or In Identity Matrix [�]
Bn(r) n-Dimensional Ball of Radius r [�]
L : RN(nx+nu+n0

g+ng+nx) 7! R Lagrangian Function [�]
Lr : RN(nx+nu+n0

g+ng+nx) 7! R Regularized Lagrangian Function [�]
z 2 RN(nx+nu) Primal Variables [�]
� 2 RN(n0

g+ng) Inequality Dual Variables [�]
�prior 2 RN(n0

g+ng) Inequality Dual Variable Priors [�]
µ 2 RNnx Equality Dual Variables [�]
µprior 2 RNnx Equality Dual Variable Priors [�]
A Real-Time/Online Algorithm [�]
L Bounded Family of Cost Functions [�]
r⌧ : RN(nx+nu) 7! R Instantaneous Regret [�]
RMaxIter : RN(nx+nu) 7! R Cumulative Regret [�]

Chapter 4

D Number of Controllable Devices [�]
W Number of Uncontrollable Devices [�]
Tk Zone Temperature at Time-Step k [�C]
T k, T k Minimum and Maximum Zone Temperature at Time-Step k [�C]
Pk Power Consumed at Time-Step k [kW]
P k Maximum Power Consumed at Time-Step k [kW]
Pfan,k Power Consumed by Fan at Time-Step k [kW]
Pch,k Power Consumed by Chiller at Time-Step k [kW]
ṁk Air Flow Mass at Time-Step k [kW]
Tda,k Discharge Air Temperature at Time-Step k [kW]
To,k Outdoor Air Temperature at Time-Step k [kW]
Qs,k Solar Irradiance at Time-Step k [kW]
Qi,k Internal Irradiance at Time-Step k [kW]
yref,k Reference Power at Time-Step k [kW]
� Power Deviation Cost Coefficient [�]

Appendix A

✓k Angle relative to Vertical Position at Time-Step k [rad]
✓̇k Rate of Change of ✓ at Time-Step k [rad/s]
⌧
↵
k Controlled Torque acted on Pendulum at Time-Step k [Nm]
⌧
↵
d,k Exogenous Torque imposed on Pendulum at Time-Step k [Nm]
m Mass of Pendulum [kg]
l Length of Pendulum [m]
⌘f Friction Parameter [Nms/rad]
g Gravitational Constant [m/s2]

Indices

d Device
k Time-Step in MPC Horizon
k0 Absolute Time-Step in MPC Simulation
t Training/Test Sample Index
r Regularized (Lagrangian Function)
f Terminal Set/Cost
0 System Cost/Constraint
i State Index
tr Training Data
⇤ Test Data
? Optimal Point

Acronyms and Abbreviations

OCP Optimal Control Problem
MPC Model Predictive Control
DTMPC Discrete-Time Model Predictive Control
NMPC Nonlinear Model Predictive Control
LBMPC Learning-Based Model Predictive Control
RMPC Robust Model Predictive Control
SMPC Stochastic Model Predictive Control
LQMPC Linear-Quadratic Model Predictive Control
BO Bayesian Optimization
GP Gaussian Process
ARD Automatic Relevance Determination
RKHS Reproducing Kernel Hilbert Spaces
CT Continuous-Time
DT Discrete-Time
RBF Radial Basis Function
SE Squared-Exponential
TCL Thermostatically-Controlled Load
ESS Energy-Storage System
DER Distributed Energy Resource
DR Demand Response
QP Quadratic Program
mpQP Multi-Parametric Quadratic Program
LQ Linear Quadratic
TDO Time-Distributed Optimization
IoT Internet-of-Things
KKT Karush-Kuhn-Tucker
SVD Singular Value Decomposition
PCA Principal Component Analysis
OED Optimal Experiment Design

RHGC Receding Horizon Gradient-based Control

Chapter 1

Introduction & Literature Review

1.1 Problem Statement & Applications

1.1.1 Real-Time MPC with Unknown Cost & Dynamic State Functions

Model Predictive Control (MPC) is a powerful framework for controlling a dynamic system to
meet performance and safety objectives by predicting responses of the system to different inputs,
and optimizing over these inputs for some future time horizon. As systems become more complex
however, the time required to solve this problem may supersede the time available before a control
action must be implemented. In this case, we must settle for sub-optimal solutions attained before
the optimization algorithm has converged with real-time control schemes.

In theory, we can control any controllable (see Def. D.1.1) system given that we have a
well-defined objective and a precisely identified system. However, real-life systems and objectives
are dynamic and subject to significant uncertainty. The assumed models used in the control
scheme to describe the system and the objective may deviate considerably from the true models
as a result of environmental disturbances, restrictive model classes or insufficient modeling data.
The hidden true functions may express complex relationships which are sparse, nondifferentiable,
or even unavailable in closed-form expressions, such that they are ill-suited to gradient-based
numerical optimization methods [1].

There are cases, namely when a human is involved in the control loop, where the cost
function must be specific and adaptive to the user in question. In these contexts, the modeled cost
function, which could be derived from dated or inaccurate assumptions or generalized from tests
on restrictive samples of users to the greater population, may not correspond closely to the true
cost function of the real user. There are cases when complex systems cannot be well described
by available synthetic models or approximations, and furthermore when these systems evolve over
time due to degradation or changes in unobservable states. There are cases, where users or systems
cannot be “taken offline” to conduct the extensive testing required to identify the true objective or
a high-fidelity system model. Even if tests are possible, they are likely to be expensive in terms
of time and effort. Nonlinear, nonparametric identification methods offer a potential solution to
these challenges, as they are well-suited to identifying bias-free objective and system models in an
online fashion [2].

When allowing for unknown or uncertain functions in a control scheme, a trade-off
to address is the requirement to express the objectives of the controller and the dynamics of the
system in a way that closely reflects true behavior, while exhibiting certain properties that facilitate
solving the problem. The frameworks of robust MPC (RMPC) [3] and stochastic MPC (SMPC)
[4] explicitly consider different sources of uncertainty in their formulation, ensuring constraint
satisfaction for certain classes of disturbances or uncertainties. One of the limitations of these
control methodologies however, is their strict division between a design phase and an application
phase. The former is generally executed offline by a control engineer, and the latter describes
the subsequent execution of the controller, during which its formulation remains largely static [1].

1

2 1.1. Problem Statement & Applications

Under these paradigms, there is limited scope for adaptive control of the system, whereby the
models describing the problem may be updated online in response to new information.

The work of this paper diverges from nominal MPC schemes (illustrated in Fig. 1.1a)
in two ways. Firstly, while there exists extensive literature on nominal MPC methods in which
the deterministic models for the cost and system dynamics are known, we consider the case in
which a) the system affects the user, but no model for the perspective of the user exists and b)
it is costly or infeasible to formulate a physics-based model of the system with thorough offline
testing. Therefore nonparametric learning methods are advocated in this work to model the cost
to the user and the response of the system for different possible control actions, system states
and environmental disturbances (illustrated in Fig. 1.1b). Secondly, while many existing MPC
schemes assume optimization to convergence (batch optimization), we advocate a departure from
the traditional setting to address time-complexity constraints, a limited time-frame in which a
solution is required or unobservability of exogenous variables by implementing a real-time MPC
scheme (illustrated in Fig. 1.1c) with an online optimization algorithm.

(a) Nominal Batch MPC

(b) Learning-Based Batch MPC

(c) Real-Time Learning-Based MPC

Figure 1.1: MPC Schemes

Chapter 1. Introduction & Literature Review 3

1.1.2 Applications to the Optimization of Energy Systems

Global energy supply is undergoing a rapid transition from conventional fossil fuel sources to renew-
able alternatives. This places new demands on the existing electricity grid, which must continue to
balance unpredictable energy demand with stochastic renewable energy supply. A failure to adapt
to this changing energy landscape can result in extreme price volatility and additional strain on
the existing grid infrastructure. Additionally, the electricity grid must accommodate an increasing
number of distributed energy systems. While some of these devices pose a challenge, others, such
as controllable loads offer an opportunity for intelligent adaptation of the grid using principles of
control and learning theory. Demand response (DR) strategies, for example, have the potential
to provide ancillary services to the grid by enabling controllable energy devices to support power
and voltage balance services at different time-scales [5, 6, 7, 8, 9]. DR schemes can be formu-
lated as multiuser optimization problems, in which the objective is to maximize the contribution
of a network of devices (or users) to the grid based on real-time requirements, while minimizing
the costs incurred (or alternatively, maximizing the utility provided) to the users of these devices
within constraints that can couple multiple devices [10, 11]. Clearly, such approaches necessitate
integrating user-preferences in the control loop, which cannot always be modeled by closed-form
expressions, generalized over a population of users or assumed to be invariant with respect to time
and environmental variables.

The MPC framework has been established in process control, automotive systems,
robotics and chemical processes. In this work, the algorithmic framework presented is validated by
controlling a network of distributed energy systems in building, where it is not possible to obtain a
synthetic model of the cost incurred to the users of each device. We therefore implement Gaussian
Processes to learn the dissatisfaction of users from real-time user feedback. In addition, it is not
feasible to regularly close and empty the building to perform extensive testing for the purposes
of maintaining an up-to-date dynamic state model of each device. Instead, we propose leveraging
feedback from the individual devices to generate a time-varying Gaussian Process model for each
one which reflects changes in the device and its environment over time.

The MPC scheme is a natural choice for energy systems as it meets the real-time
requirement of the control scheme, allows for the integration of constraints on each device as well
as on their coupling and allows for a composite cost (or objective) function which includes both
terms specific to individual users as well as for their coupling. The receding horizon nature of MPC
provides a framework to ensure recursive feasibility and stability of the control scheme. A real-time
MPC scheme such as that employed by a distributed network of energy systems requires a highly-
efficient optimization algorithm which can achieve satisfactory results within very few (ideally one)
iterations. In this work, a primal-dual gradient-based optimization method is employed for this
purpose due to the Q-linear convergence properties achieved by the tracking error of its online
implementation.

1.2 Literature Review
In this section, we will outline the key findings in a representative collection of papers applying
control and/or GP learning strategies to multiuser problems with unknown systems and/or cost
functions.

1.2.1 Networked & Multiuser Dynamical Systems

The multiuser problem describes a constrained optimization problem specified by a set of users,
an objective function given by a sum of user-specific utility functions and a collection of linear
constraints that couple the users’ decisions. The authors of [12] consider the problem in which
the user decisions are coupled both in the objective function by a convex coupling cost and by
convex nonlinear constraints which are not necessarily separable by user. An approximation of the
multiuser problem is obtained with a Tikhonov regularization (see Appendix D.5) and a gradient-
based distributed optimization algorithm is used to solve this approximation. Different step lengths

4 1.2. Literature Review

are used across users as well as across the primal-dual space. An estimate of the error achieved
between the true optimal function values and those resulting from the regularized variant is derived.
In this distributed setting, it is assumed that each user a) knows only its own objective function
and feasible sets and b) can modify only its own decision variables but can observe the decisions
made by other users. The approach of this limited coordination algorithm is for each user to update
its own decision variables. The multiuser optimization structure is adopted in this work for the
case where a network of devices must be controlled in real-time, and the device dynamics and user
cost functions are unknown.

The problem of DR control systems which consider user feedback is addressed in [13].
A known time-varying engineering cost is combined with an unknown discomfort function for each
device in the system to formulate a composite cost function which balances system-level operational
objectives and user dissatisfaction objectives. Measurements of electrical quantities are used to
estimate the gradient of the known engineering cost, such that measurements of the disturbances
which influence the electrical quantities are not required. A shape-constrained Gaussian Process is
used to learn the unknown user dissatisfaction function, resulting in a strongly convex and smooth
approximation that can handle asynchronous and noisy data. A projected gradient method is used
to solve the single-stage problem at each time-step. In this thesis, a similar problem is addressed
using the MPC framework with integrated black-box dynamic state models.

The real-time coordination of networked distributed energy resources (DERs) is studied
in [14], where each DER device (which is connected to a node in the network) may have contin-
uous and discrete power setpoints broadcasted to it by a network operator and constraints on
distribution lines couple the power injections and state dynamics of individual devices. Real-time
implementation is facilitated by assuming a linear relationship between the electrical quantities
of interest which couple the nodes and the power flow injections. A framework is provided to
integrate both devices with convex and compact power setpoints (or control inputs) and discrete
power setpoints. The coupling variables are constrained by an affine network-level inequality. The
cost function for each node is defined as the sum of the costs associated with the individual devices
connected to that node and is assumed to be strongly convex. Both batch and online regularized
primal-dual gradient-descent algorithms are presented with unique saddle points and linear conver-
gence properties. A distributed stochastic implementation is proposed in the form of a Stackelberg
game (Appendix D.4.1), whereby the decomposability of the Lagrangian function is leveraged such
that each node can update the primal variable power setpoints of the devices connected to it, and
the network operator can in turn update the dual variables. The algorithm is validated using
synthetic models of HVAC and energy-storage systems. In this work, we employ a similar compos-
ite objective function including GP-learned (but not restricted to shape-constrained) user-specific
utility functions in a real-time MPC scheme.

In [9], a distributed optimization algorithm is proposed for solving optimal control
problems in multi-building networks which are coordinated by a DR program. The problem is
modeled as a distributed convex optimization problem with separable cost functions and coupled
affine equality constraints. A variant of the Augmented Lagrangian based Alternating Direction
Inexact Newton (ALADIN) optimization method is employed and a convergence guarantee is pro-
vided. The state dynamics of each building are modeled by discrete linear equations, where the
states represent the temperatures of the thermal zones and the inputs represent the thermal cooling
energy input. The objective for each individual building is to track a given target room temper-
ature while minimizing the energy input required to do so. A strongly convex but non-smooth
quadratic programming (QP) problem is formulated which aims to minimize the economic cost
of the electricity, track the reference temperatures in each zone and minimize the energy input
required to achieve this. In the proposed algorithm, a decoupled QP is solved locally at each
building and the solution is communicated to the grid operator. The grid operator then solves
an equality-constrained QP and communicates the relevant solution to each building. The local
optimal control problem (OCP) is equivalent to a multi-parametric QP (mpQP) and so the so-
lution maps are piecewise affine. The operator OCP is a QP without inequality constraints, and
thus has an analytical solution. MPC is chosen as a controller scheme which meets the real-time
requirements of the problem and gradient-based primal-dual decomposition optimization methods

Chapter 1. Introduction & Literature Review 5

are leveraged to develop an efficient online solver. Additionally, warm-starting is employed to fa-
cilitate online tracking of the true MPC optimal trajectory. The proposed online MPC strategy
succeeds in balancing the voltage surge of the building network while tracking a reference temper-
ature for each zone at a low power input. In this work, a similar case study is employed, with
unknown functions describing the dynamics of each building and users involved in the control loop.

1.2.2 Real-Time Learning of Black-Box Functions

In a multiarmed bandit problem (see Appendix D.4.3), the controller attempts to optimize a cost
function that it is simultaneously learning. In [15], the GP-UCB algorithm is proposed to solve
this problem, where inputs are selected which achieve a high upper confidence bound on functions
sampled from either a Gaussian Process or a reproducing kernel Hilbert space (RKHS). Both the
potential information gain (exploration) and the potential to find the extrema of the function
(exploitation) are considered by selecting function inputs which maximize the posterior mean and
the posterior standard deviation of the unknown function, with relative weighting expressing the
trade-off between the dual objectives. The authors succeed in establishing a novel link between
optimization of a GP-sampled function and optimal experiment design (OED) by deriving bounds
on the cumulative regret (see Appendix C.9) of the algorithm and proving sublinear regret bounds
for many commonly used kernel functions.

When implementing Gaussian Processes and the associated covariance kernel functions
in practice, one cannot assume that they know the kernel hyperparameters in advance and mis-
specification can result in convergence to poor local optima. The authors of [16] address this
problem by proposing an algorithm for Bayesian optimization with unknown hyperparameters and
deriving bounds on the error achieved. The so-called Adaptive GP-UCB algorithm is proposed
for the case where neither the norm bound nor the length-scales of a stationary covariance kernel
are known. The function space associated with the hyperparameters is slowly expanded over time,
resulting in a BO algorithm that is provably no-regret when the covariance kernel hyperparameters
are unknown.

The majority of the computational burden of making predictions with GP-modeled
functions results from the inversion of the training data covariance matrix (O(N3

tr)). This can be
a barrier to learning functions in a real-time control scheme. The authors of [17] developed a) a
‘sliding-window’ approach to fix the dimensions of the covariance matrix while updating it with
new training samples online and more critically, b) an efficient means of computing the matrix
inverse requiring only the previous inverted matrix and the new training samples, resulting in a
time-complexity of O(N2

tr). Other methods for more efficient covariance matrix inversion include a
‘sparsification’ procedure proposed in [18], in which a candidate training sample is only admitted
to the training set if its image in feature space cannot be sufficiently approximated by combining
the existing training samples; or the application of principal component analysis (PCA) proposed
in [19], whereby the dominant eigenvectors of the covariance matrix are extracted using singular
value decomposition (SVD).

An alternative approach to learning unknown nonlinear functions given input and out-
put samples is presented in [20]. A continuous-time recurrent neural net with a hyperbolic tangent
activation function (i.e. a nonlinear function which determines whether a neuron should be ‘ac-
tivated’ or not before sending its input to the next layer of neurons or finalizing it as an output)
is developed which approximately reproduces the unknown function input-output behavior. The
temporal-nature of the unknown dynamic state model considered is leveraged in the recurrent
neural network approach. This requires connections between nodes which form a directed graph
along a temporal sequence (i.e. previous states, inputs and outputs to subsequent ones). The
key element of recurrent neural networks is that they have memory - they can take information
from prior neuron inputs to influence the input and output of the current layer of neurons. The
model class considered is a state-space linear model with unknown parameters filtered by the ac-
tivation function. A number of neurons equal to the number of states is employed in a learning
procedure that generates these parameters within a bounded set based on pairs of inputs and
outputs observed. A bound on the error of the approximated model is derived, which depends on

6 1.2. Literature Review

a minimum number of samples, a sufficiently high number of available derivatives of the output,
the time period over which the model is defined and the bound on the model parameters. While
this approach requires only input and output values of the black-box function under study, the
drawback is the high minimum number of samples required to guarantee a bound on the modeling
error. Additionally, for the purposes of user-specific utility functions, we cannot generalize a model
generated at a high computational expense for a small sample of users to the general population.

1.2.3 Real-Time Model Predictive Control

Time-Distributed Optimization (TDO) [21] or Real-Time Iteration (RTI) [22] is an approach to
reducing the computational burden of a MPC scheme. With this method, optimization iterations
are distributed over time by maintaining a running solution estimate and updating it at each
sampling instant. The central concept of this method is that an iterative optimization method
can be truncated to produce a sub-optimal MPC feedback law while maintaining stability and
constraint satisfaction and reducing the computational burden of the controller. The authors of [21]
perform a detailed systems theoretic analysis of this control scheme to identify and analyze multiple
mechanisms for ensuring stability of the closed-loop system. They consider an input-constrained
Linear-Quadratic MPC (LQMPC) using primal gradient-based optimization methods and derive
analytic expressions for the MPC and optimizer gains, a sufficient condition for asymptotic stability
and a corresponding iteration bound. Strategies identified include increasing the number of solver
iterations, preconditioning the OCP, tuning the cost function and reducing the prediction horizon.
The authors of [22] provide a proof for the asymptotic stability for a class of real-time optimization
methods for nonlinear MPC (NMPC) by constructing a Lyapunov function for the system-optimizer
dynamics for the case where a single iteration is executed to solve the problem at each time-step.

1.2.4 Learning-Based Control Schemes

The authors of [1] review solutions to the problem of learning-based control for three categories: a)
automatic improvement of the dynamic state model using data measurements, b) learned parame-
terization of the MPC problem and c) leveraging MPC to augment learning-based control schemes
with constraint satisfaction properties. A general OCP for uncertain costs and system dynamics
is formulated, in which a) two sources of uncertainty or error are considered: time-invariant para-
metric uncertainty and time-variant uncertainty derived from disturbance or process noise; b) the
deterministic objective function is replaced by the expected value of the sum of stage cost functions
over all uncertainties and c) the deterministic constraints on the states and control inputs are re-
placed by joint (for the feasible state space and the feasible control input space) chance constraints
whereby the the constraints must be satisfied with a given minimum probability. This results in
an equivalent stochastic optimal control problem. Given the challenges involved in directly solving
such a problem MPC is proposed as a tractable approximate solution strategy. An extensive review
of existing learning-based MPC paradigms designed to solve this problem are reviewed.

A safe learning-based MPC scheme is presented in [23]. The purpose of the scheme is
to efficiently explore the input space of the model within the context of safety-critical applications.
Safety in this context is defined in terms of recursive feasibility and robust constraint satisfaction.
This is achieved by guaranteeing the existence of feasible return trajectories to a safe region of
the state-space with high probability. It is assumed that: a) the unknown function belongs to
a RKHS model class, b) the unknown error function has a bounded norm (as measured by the
norm induced by the continuously differentiable and unique kernel of the RKHS), c) the system
is subject to polytopic state and control constraints and d) we have access to a backup controller
that guarantees that we remain inside a given safe subset of the state space once we enter it. An
inverted pendulum system is considered to validate the proposed MPC strategy. A prior model
of the system dynamics is taken to be a linearized synthetic approximation of the true function
with inaccurate parameterization and the model error is then learned with Gaussian Processes,
where the errors of these GP approximations are contained by confidence-ellipsoids. The result is
a learning-based MPC scheme that can provide provably high-probability safety guarantees. The

Chapter 1. Introduction & Literature Review 7

work of [23] is extended in this thesis to include black-box cost functions, time-varying dynamic
state functions and time-varying constraints within a real-time MPC context.

Without employing additional matrix inversion techniques, the complexity of training
and predicting with Gaussian Processes is O(N3

tr), due to the necessary inversion of the training
data covariance matrix. It is thus desirable to obtain the most accurate GP model possible with the
least amount of training data. To this end, in [24] an optimal subset of the training set is selected.
A sub-problem is solved to maximize the information gain over all of the auto-regressive outputs,
control inputs and exogenous disturbance inputs available in the training set. A chance constraint
guarantees a minimum probability that the output is within a given set. A zero-variance method
is used which assumes the auto-regressive outputs to be equivalent to their expected values, and
therefore this strategy does not propagate uncertainty through the multi-step simulation. The
algorithms developed were applied to an energy management case-study during a DR event for
large electricity consumers.

Gaussian Processes are used in conjunction with MPC to learn a nonlinear dynamical
system in [25]. The proposed MPC scheme considers the variance (or uncertainty) of GP approx-
imation in predictions of system behavior over the horizon. The resulting GP model describes
both the expected system dynamics as well as the confidence in these predictions. Once this GP
model is integrated into a MPC scheme, the closed-loop system is designed to avoids region with
large variance (in favor of safety) at the expense of a greater cost function (at the expense of
performance). The control scheme is demonstrated with a pH process control example.

In [26], a learning-based robust controller is proposed in which the initial (prior) model
of the system is updated using Gaussian Processes to approximate the model error such that the
uncertainty associated with the model gradually decreases over time. A stabilization problem is
considered and the GP model is linearized around an operating point to obtain a robust linear
controller. The mean, the variance and the closed-form expressions for the derivatives of the mean
and variance with respect to the inputs are utilized to formulate a linear state-space model of the
system as well as an uncertainty model.

1.2.5 Online Primal-Dual Gradient Descent Optimization Methods

The authors of [27] address the synthesis and analysis of regularized primal-dual gradient methods
to track a Karush-Kuhn-Tucker (KKT) trajectory. Sufficient conditions for the online algorithm
are derived under certain conditions, asymptotic bounds for the tracking error are derived and
analytical convergence is derived for a continuous-time version of the algorithm. Additionally,
sufficient conditions such that the KKT trajectories will not bifurcate or merge are proposed. This
work is extended in [28] to include equality constraints. The proposed algorithm in [28] is adapted
in this thesis to serve a discrete-time MPC control scheme, to use the closed-form expressions for
the derivative of the posterior mean of a Gaussian Process in the iterate updates and to allow for
more than a single iteration. Furthermore, it is verified with a case study on a system of energy
systems.

In [29], an online primal-dual projected-gradient method is applied to solve a time-
varying optimization problem associated with a networked system. The time-varying Lagrangian
function of the problem is regularized and thus designed to be strongly convex (concave) in the
primal (dual) variables. Hence, the optimizer is unique but does not coincide with the optimizer
for the original Lagrangian function. Measurement feedback is employed, whereby measurement
of the control inputs and outputs are used in place of the last issued control inputs or postulated
model for the measurement. This technique lends itself to a distributed implementation and does
not rely on measurements of the exogenous inputs which may affect the outputs. Proofs of average
regret bounds and linear convergence are provided. The time-varying network model from [29] is
adapted in this work to consider a system constrained by nonlinear dynamic state functions and
controlled by a MPC scheme.

In [30], the authors deal with online convex optimization problems with time-varying
black-box cost and constraint functions. The cost function is learned using feedback at given
test points and the constraints are learned, and possibly simultaneously violated, upon making

8 1.3. Challenges

decisions. Proposed applications for this work include online network tasks e.g. Internet-of-Things
(IoT), where online decision-makers (or control schemes) must flexibly adapt to unpredictable user
preferences and resource limitations. The bandit online saddle-point (BanSaP) control scheme
proposed can adapt in response to feedback from multiple users and the environment. The authors
measure the performance of this algorithm using dynamic regret and fit (accumulated constraint
violation). The algorithm is designed to be a gradient-free lightweight approach which is amenable
to low-power distributed devices. The goal of the algorithm is to find a sequence of solutions which
minimizes the aggregate time-varying cost function and to ensure that the time-varying constraints
are satisfied in the long run on average. The limitations of this approach are that the unknown
functions are assumed to be convex and measurements of the disturbances, on which the constraint
function is dependent, are tantamount to learning the function.

In [31], the Receding Horizon Gradient-based Control (RHGC) scheme is proposed to
optimize a time-invariant linear dynamical system with an associated time-varying convex stage
cost in an online fashion, in which accurate predictions of the stage cost in a finite lookahead
window are available to use in gradient calculations. Upper bounds for the dynamic regret of
the online algorithm based on the standard gradient-descent and triple-momentum accelerated
gradient-descent methods are derived and the proposed algorithm is validated in a path-tracking
experiment. The limitations of this method are that the regret properties derived assume a deter-
ministic linear system and the availability of accurate predictions of the stage cost function over a
future time-window.

1.2.6 Modeling & Control of Thermostatically-Controlled Loads

In [32], the application of MPC to an aggregation of thermostatically-controlled loads (TCLs) for
the purposes of short-term DR ancillary services is demonstrated. The authors employ an aggre-
gated state-space model which explicitly models TCL heterogeneity and show that the parameters
required for the aforementioned aggregated model can be determined from the parameters of in-
dividual TCLs or by observation of their temperature dynamics. Similarly, in [33, 34, 35], energy
systems involving TCLs have been studied using postulated models for the TCL devices. In this
work, however, we use Gaussian Processes to learn these models in real-time.

1.3 Challenges
While real-time MPC is a powerful tool when the the system, constraints and objectives are well-
defined, additional work is required in contexts in which these conditions do not hold. Static
models of systems and cost functions do not capture unpredictable environments, changing user-
preferences or evolving systems. Additionally, human-in-the-loop control schemes demand a more
nuanced approach to modeling user preferences than is provided by typical synthetic functions.
The challenges faced by real-time learning-based MPC schemes, which are addressed in this work,
are as follows:

• Distributed control schemes may include devices for which the dynamics and associated
user dissatisfaction are time-varying black-box functions, and so models based on stationary,
synthetic models may not be adequate.

• The sampling required to learn device-specific and user-specific functions may be costly
and/or require a low sampling rate.

• Real-time learning-based MPC requires a highly efficient optimization algorithm into which
learned models can be efficiently integrated.

1.4 Contributions
In this work, we apply an online primal-dual gradient-based optimization algorithm to a real-time
MPC scheme involving a network of distributed devices, in which the dynamics and cost functions

Chapter 1. Introduction & Literature Review 9

of the individual devices and associated users are unknown. The proposed real-time learning-
based MPC methodology is used to solve a network of thermostatically-controlled loads (TCLs)
in a building network by learning the TCL temperature dynamics and the discomfort of the users
while controlling the cooling power to provide ancillary services to the power grid while satisfying
the preferences of the building inhabitants. The contributions of this work can be summarized as
follows:

• Gaussian Processes are examined and implemented as a means of integrating black-box func-
tion models into a real-time gradient-based MPC scheme.

• The real-time learning-based MPC framework is adapted to account for unknown, time-
varying and possibly nonlinear dynamic state and user dissatisfaction functions.

• The proposed algorithm is implemented to optimize a network of energy systems and an
inverted pendulum system.

1.5 Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2 outlines the background theory behind modeling of black-box functions using
Gaussian Processes and formulates the necessary notation and methodology. Performance
metrics for GP models are defined and methods for defining the covariance kernel hyperpa-
rameters, choosing the prior functions, collecting the training data and promoting safety for
the control scheme adopting the GP models are described.

• Chapter 3 outlines the background theory behind discrete-time model predictive control
(DTMPC), formulates the standard DTMPC problem and an adapted variant with inte-
grated Gaussian Processes. Additionally, it outlines the theory behind the primal-dual gra-
dient optimization method used and presents the real-time MPC with Gaussian Processes
algorithm. Performance metrics for online control schemes and options for improving online
tracking performance are described.

• Chapter 4 formulates the building control problem used to validate the proposed methodology
and provides results and discussion on the GP models, batch MPC simulations and real-time
MPC simulations.

• Chapter 5 assesses the results of the case study, highlights key benefits and drawbacks of the
proposed and tested methodology and provides recommendations for further work.

• Appendix A describes a second experiment conducted on an inverted pendulum system with
the proposed control methodology. Results and discussion are provided on the GP models
and batch MPC simulations for both the true functions and the GP-modeled functions.

• Appendix B defines mathematical terms and concepts referenced to within the main text.

• Appendix C defines terms and concepts relevant to optimization theory referenced to within
the main text.

• Appendix D defines terms, techniques and concepts associated with systems and control
theory referenced to within the main text.

10 1.5. Thesis Structure

Chapter 2

Gaussian Processes

In this chapter, the theoretical knowledge fundamental to learning unknown functions with Gaus-
sian Processes is outlined and the framework used in this work to learn dynamic state models and
cost functions is given. Additional notes on relevant mathematical background are provided in B.

2.1 Bayesian Optimization
Bayesian optimization (BO) is a method for finding the extrema of an unknown objective function
that is expensive to evaluate (see [36] for a comprehensive tutorial). It is useful in scenarios in
which the closed-form expression for the function is unknown, but noisy or noise-free observations
of the true function can be obtained at sampled inputs in the domain.

Bayes’ Theorem is employed to combine prior beliefs about the unknown function with
new evidence to approximate the function by its posterior. It states that the posterior probability
of a model M given evidence E is proportional to the likelihood of E given model M multiplied
by the prior probability of the model M (see 2.1).

P (M |E)| {z }
posterior distribution

/ P (E|M)| {z }
likelihood

P (M)| {z }
prior distribution

(2.1a)

P (M |E) =
P (E|M)P (M)

P (E)
(2.1b)

Here, the prior probability P (M), represents what we know or believe about the function’s prop-
erties a priori. The posterior probability P (M |E) then represents our updated beliefs about the
function on observing further evidence. The equality 2.1b can be proven by inspection using the
expression for the conditional probability of the model M given the evidence E, as in 2.2.

P (M |E) =
P (M \ E)

P (E)
=

P (M \ E)

P (E)

P (M)

P (M)
=

P (E \M)

P (M)

P (M)

P (E)
=

P (E|M)P (M)

P (E)
(2.2)

Gaussian Processes can be used to represent the prior model M , where the training
data (the training inputs and observed outputs) represent the evidence E and the GP predictions
represent the posterior distribution P (M |E). Nonlinear regression aims to model an unknown
continuous function from a given training set of input-output pairs. Parametric regression tech-
niques attempt to infer a finite number of parameters from the training set, which when applied to
a given function class, best describe the input-output data e.g. linear regression. In nonparametric
estimation, the unknown function f is not specified explicitly using parameter values. Instead, the
function estimate is formed directly based on (noisy) observations of function values and regularity
properties. Bayesian nonparametric models are defined on an infinite-dimensional parameter space
e.g. the possible set of continuous functions in the case of nonlinear regression. This approach

11

12 2.2. Gaussian Distributions

defines a prior distribution over possible continuous functions and predicts a posterior distribu-
tion for a specified set of inputs given the observed training data using Gaussian Processes [37].
The Gaussian Process regression framework is used in this work to model unknown functions in
real-time at a low computational expense and with a low sampling rate to a degree of accuracy
sufficient for use in a MPC control scheme.

2.2 Gaussian Distributions
Definition 2.2.1 (Gaussian Distribution, [38] Appendix A.2). A multivariate Gaussian distribu-
tion is the joint probability of a finite number of free variables.

The probability density function (see Appendix B.1 and B.4) of a Gaussian (or uni-
variate/multivariate normal) distribution is expressed by 2.3a, in the compact form by 2.3b and
is illustrated by Fig. 2.1.

p(x|µ,K) = (2⇡)�
nx
2 |K|� 1

2 exp

✓
�1

2
(x� µ)TK�1(x� µ)

◆
(2.3a)

x|µ,K ⇠ N (µ,K) (2.3b)

where:

x =

2

6664

x1

x2
...

xnx

3

7775
2 Rnx is the vector of random variables

µ =

2

6664

m1

m2
...

mnx

3

7775
2 Rnx is the vector of means corresponding to each dimension of x

K =

2

66664

k(x1, x1) k(x1, x2) · · · k(x1, xnx)

k(x2, x1)
. . .

...
...

k(xnx , x1) · · · k(xnx , xnx)

3

77775
2 Rnx⇥nx is the covariance matrix

where element k(xi, xj) specifies the joint variability between random variables xi and xj .

The joint Gaussian distribution (see Appendix B.2 and B.4) of two vectors of (possibly
interdependent) random variables x and y, or the probability of sampling particular vectors of x
and y, is given in compact form by 2.4.


x
y

�
⇠ N

✓
µx

µy

�
,


Kxx Kxy

Kyx Kyy

�◆
(2.4)

where:

µa are the mean values of the random variables a

Kab is the covariance matrix specifying the variability between random variables a and b

The joint distribution 2.4 can be marginalized over y to give the marginal distribution
(see Appendix B.2 and B.4) of x, i.e. the probability of sampling a particular vector x over all
possible vectors y, and is given in compact form by 2.5.

x ⇠ N (µx,Kxx) (2.5)

Chapter 2. Gaussian Processes 13

(a) Univariate Gaussian Distribution (b) Multivariate Gaussian Distribution

Figure 2.1: The univariate Gaussian distribution in Fig. 2.1a is a function of a single random
variable, whereas the multivariate Gaussian distribution in Fig. 2.1b is a function of two interde-
pendent random variables.

The conditional distribution (see Appendix B.2 and B.4) of x given y is given in compact
form by 2.6.

x|y ⇠ N (µx +KxyK
�1
yy (y � µy),Kxx �KxyK

�1
yy K

T
xy) (2.6)

2.3 Gaussian Processes
Definition 2.3.1 (Gaussian Process, [38] Def. 2.1). A Gaussian Process (GP) is a collection of
random variables, any finite number of which have a joint Gaussian distribution.

A GP is completely specified by its mean function m(x) (2.7) and covariance function
k(x,x0) (2.8).

m(x) = E[f(x)] (2.7)
k(x,x0) = E[(f(x)�m(x))(f(x0)�m(x0))] (2.8)

A function f(x) represented by a GP can be expressed as a distribution over possible
functions, denoted by 2.9.

f(x) ⇠ GP(m(x), k(x,x0)) (2.9)

The function values at any finite number of inputs, e.g. f(x1) and f(x2), have a
joint Gaussian distribution (2.10), in that the function value for each random vector xi has a
corresponding mean m(xi) and the interdependence of the function values are expressed by their
covariance matrix entries given by the function k.


f(x1)
f(x2)

�
⇠ N

✓
m(x1)
m(x2)

,


k(x1,x1) k(x1,x2)
k(x2,x1) k(x2,x2)

�◆
(2.10)

GPs exhibit a marginalization property (or a consistency requirement). This means
that if the GP specifies a joint distribution then it can also specify that distribution marginalized

14 2.4. Covariance Function

over one or more of the inputs. For example, the joint probability distribution in 2.10 can be
marginalized over f(x2) to give the distribution of the function value f(x1) in 2.11.

f(x1) ⇠ N (m(x1), k(x1,x1)) (2.11)

Intuitively, the random variables [f(x1), f(x2)] can be thought of as the values of the
unknown function f at inputs [x1,x2] from the continuous function domain. The function value
at any given input, f(x), is uncertain and has a Gaussian distribution given by 2.12.

f(x) ⇠ N (m(x), k(x,x)) (2.12)

.
The GP is therefore the stochastic analogy to the deterministic (or true) scalar function.

Whereas the deterministic function returns a scalar f(x) for an arbitrary input x, the stochastic
GP returns the mean and variance of a normal distribution over the possible values of f at x (see
[38] Sec 2.2 for an in-depth description of this function-space view of Gaussian Processes).

2.4 Covariance Function
The choice of mean function (2.7) and the covariance function (2.8) for a Gaussian Process make
it possible to encode prior beliefs about the properties of the unknown function into the approxi-
mation. Whereas the mean function is generally taken to have a constant zero value (see [38] Sec.
2.2), the covariance function plays a significant role in the accuracy of the GP model.

The covariance function or kernel specifies the covariance between pairs of random
variables and is defined in Def. 2.4.1.

Definition 2.4.1 (Kernel, [39]). A function k : X ⇥ X 7! R is a kernel if:

1. k is symmetric: k(x1,x2) = k(x2,x1)

2. k is positive semi-definite: 8x1,x2, . . . ,xn 2 X , the Gram Matrix K 2 Rn⇥n defined by
Kij = k(xi,xj) is positive semi-definite (i.e 8v 2 Rn

,vTv � 0).

For the purposes of modeling functions as Gaussian Processes, the covariance between
the function values at two different inputs, f(x1) and f(x2), is expressed as a function of the two
corresponding input random variables, x1 and x2, see 2.13.

cov(f(x1), f(x2)) := k(x1,x2) (2.13)

This is based on the understanding that points along the function f with inputs x1 and
x2 that are close (as measured by the induced vector norm of the topological space) to each other
(and thus have a high covariance) are likely to have observed function values (or target values),
y = f(x) + , which are close to each other.

An arbitrary function of input vectors x1 and x2 will not necessarily be a valid covari-
ance kernel. There are, however, some commonly-used models with well-established properties. A
stationary covariance kernel is a function of x1 � x2 and is therefore invariant to translations in
the input space X . One issue that arises with stationary kernels is that they do not consider func-
tion classes with different rates of change w.r.t. the inputs to be likely. An isotropic kernel is, in
addition, a function only of the radius r = |x1�x2| and is therefore invariant to all rigid motions.
Isotropic kernels are also referred to as radial basis functions (RBF), as they are a function of the
radius only (see [38] Chapter 4 for a comprehensive description of different covariance kernels).

The squared exponential (SE) covariance kernel has been successfully implemented in
literature [13, 24] and is given by Eqn. 2.14.

kSE(x1,x2) = �
2 exp

✓
�1

2
(x1 � x2)

Tdiag(l)�2(x1 � x2)

◆
+ �

2
n�12 (2.14)

Chapter 2. Gaussian Processes 15

where:

l 2 Rnx
++ is the characteristic length scale

� is the output variance

�n is the measurement noise

x1,x2 2 Rnx are two arbitrary input vectors

The SE covariance function is infinitely differentiable, meaning that it has mean square
derivatives (see Appendix B.7) of all orders and is thus very smooth. It is also infinitely divisible,
meaning that (k(x1,x2))t is a valid kernel (i.e. symmetric and positive semi-definite) for all t > 0.

The so-called hyper-parameters of the SE covariance kernel � and l need to be tuned
correctly such that the Gaussian Process will approximate the unknown function to a sufficient
degree of accuracy without over-fitting. Note that the length scale is a vector, and can be tuned
to vary for each dimension of the input x. When multiple Gaussian Processes are used to model
a collection of unknown functions, the optimal parameters are naturally different for each case.

2.5 Hyperparameter Selection

In order for the Gaussian Process model to be considered useful, it must be specified in a way that
will most accurately represent the true function. In our case, we must specify the prior mean of the
function and the prior covariance. The mean function can be set to a linearized approximation of
the function, to any number of known terms in the function or, most frequently, to a zero constant.
Generally the covariance function is more involved and is specified by both the discrete choice of
kernel function and the continuous setting of its hyperparameters. Training of a Gaussian Process
refers to both the selection of the covariance function and its parameters (see [38] Chapter 5).

The SE covariance kernel used for each GP in this work has a hyperparameter vector
✓ = [�, lT]T (the standard deviation of the output and the length scales, respectively). Notice
that we take the standard deviation of the output (as opposed to the variance) such that we
can optimize for these values over the full domain of R/{0}, which simplifies the hyperparameter
selection process described later in this section.

In some cases the meaning of the hyperparameters is intuitive, which aids in the selec-
tion process and also in interpretation of the training data given the optimized hyperparameters.
For example, the characteristic length scale for a given dimension i, li, gives the approximate
distance along dimension i in the input space between two uncorrelated function values i.e. an ad-
jacent peak and trough in the function along axis i. Loosely speaking, the variation in the observed
outputs along that axis which are less than the corresponding length scale will be neglected by the
GP prediction. The SE function thus implements automatic relevance determination (ARD) (see
[40]) in that the inverse of the length-scale specifies how relevant variations along that dimension
are, and thus how relevant that feature is to the covariance. This effect can be used to effectively
exclude the influence of certain inputs from the Gaussian Process regression by imposing a very
large length scale along the corresponding dimension.

Two prominent approaches to finding suitable parameters include cross-validation and
maximizing the marginal log likelihood of the observed outputs given the training data and a par-
ticular choice of hyperparameters (see [38] Sec. 5.4.1 for a comparison of different model and
hyperparameter selection techniques). We will apply the latter approach, in which Bayesian infer-
ence is applied to express the distribution of the observed outputs given the hyperparameters. In
the case of Gaussian Process regression, the integrals over the hyperparameters in the marginalized
distribution are analytically tractable (see [38] Sec. 5.4.1). The marginal log likelihood of seeing
the observed outputs y conditioned on the true function values f , the training data X and the
hyperparameters ✓ and subsequently marginalized over the true function values is given by. Eqn.

16 2.6. Bayes’ Theorem & Gaussian Processes

2.15.

log p(y|X,✓) = �1

2
yT

K
�1
y y

| {z }
data-fit term

� 1

2
log |Ky|

| {z }
complexity penalty

� Ntr

2
log 2⇡

| {z }
normalization constant

(2.15)

where:

Ky = Kf + �
2
nI is the covariance matrix for the noisy observations y

Kf = K(X,X) is the covariance matrix for the noise-free observations f

In seeking the optimal hyperparameters ✓?, we aim to maximize the marginal log
likelihood with respect to ✓ in the unconstrained optimal control problem 2.16.

max
✓2R1+nx

log(y|X,✓) (2.16)

The solution to 2.16 can be found given the expression 2.17 for the partial derivatives
of the marginal log likelihood w.r.t. ✓.

@

@✓j
log p(y|X,✓) =

1

2
tr
✓
(↵↵T �K

�1
y)

@Ky

@✓j

◆
(2.17)

where ↵ = K
�1
y y.

The optimal hyperparameters ✓? can thus be found using a gradient-based optimiza-
tion method, since the time-complexity of calculating the derivatives 2.17 is small (O(N2

tr) per
hyperparameter ✓j) once the more computationally expensive inverted covariance matrix K

�1
y has

been computed (O(N3
tr) for matrix inversion of symmetric positive-definite matrices).

2.6 Bayes’ Theorem & Gaussian Processes
Gaussian Processes (Def. 2.3.1) are a tractable realization of Bayesian nonparametric nonlinear
regression. Prior beliefs about the function are encoded in mean and covariance functions (illus-
trated by Fig. 2.2a for a prior mean of 0 and a SE covariance kernel) and combined with observed
(noise-free or noisy) function outputs to generate posterior mean and covariance values (illustrated
for increasing training set size by Fig. 2.2b and 2.2c).

Let X be the Ntr ⇥ nx matrix of training points, y be the Ntr ⇥ 1 vector of observed
outputs (or target values), X⇤ be the N⇤ ⇥ nx matrix of test points and f⇤ be the N⇤ ⇥ 1 vector
of test outputs we wish to predict for each point (row) in X⇤. Furthermore, let µy and µf⇤ be the
mean vectors corresponding to y and f⇤, respectively; and K be the covariance matrix coupling
these two Gaussian-distributed vectors. Assuming that both the noisy training outputs y and
the (yet unknown) test outputs f⇤ are both described by Gaussian distributions, their joint prior
distribution is given by 2.18.


y
f⇤

�
⇠ N (µ,K) (2.18)

where:

µ =


µy

µf⇤

�
is the vector of mean values

K =


Ky,y Ky,f⇤

Kf⇤,y Kf⇤,f⇤

�
is the covariance matrix

Chapter 2. Gaussian Processes 17

Recall from the introduction on GPs in Sec. 2.3 that the joint distribution of any finite collection
of random variables from a GP is also a GP. To obtain the posterior distribution over the possible
test outputs f⇤, we condition the joint prior distribution f⇤ on the observations X,y as well as on
the given test inputs X⇤, obtaining the distribution 2.19.

f⇤|X⇤, X,y ⇠ N (µf⇤ +Kf⇤,yK
�1
y,y(y � µy),

Kf⇤,f⇤ �Kf⇤,yK
�1
y,yKy,f⇤)

(2.19)

Expression 2.19 is derived from Bayes’ Theorem (see 2.1) in that the posterior distribu-
tion (P (M |E) = f⇤|X⇤, X,y) is the prior model (P (M) = N (µ,K)) conditioned on the observed
function outputs (E = (X,y)).

2.7 Predicting Outputs with Noise-Free Observations
The general expression for predicting outputs from a GP given an arbitrary prior mean vector
µ and covariance matrix K is given by 2.19. In this section we will outline the GP prediction
procedure for the specific case of noise-free target values.

Given that the function output observations are noise-free, we can assume that the
training set (X, f) = {(xi, fi)|i = 1, . . . , Ntr} is known, where the observed outputs fi are equivalent
to the true function outputs f(xi).

The joint distribution of the vector of previously observed outputs f , and the vector of
outputs f⇤ we wish to predict at given test inputs X⇤, is given by 2.20.


f
f⇤

�
⇠ N

✓
µf

µf⇤

�
,


K(X,X) K(X,X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
(2.20)

The conditional distribution of the function, f⇤ conditioned on observed training data,
(X, f) is then given by 2.21.

f⇤|X⇤, X, f ⇠ N
�
f̄⇤,K(f⇤, f⇤)

�
(2.21)

where:

f̄⇤ = µf⇤ +K(X⇤, X)K(X,X)�1(f � µf) is the posterior mean of the GP prediction

K(f⇤, f⇤) = K(X⇤, X⇤)�K(X⇤, X)K(X,X)�1
K(X,X⇤) is the posterior covariance matrix of the

GP prediction

2.8 Predicting Outputs with Noisy Observations
The prediction given by 2.21 is not applicable to most realistic cases in which the target values y
are not precisely reflective of the true function outputs f but rather noisy samples of the function.
In this section we will outline the GP prediction procedure for the case of noisy target values.

Consider the case where the function output observations have been corrupted by a
Gaussian noise with mean 0 and variance �

2
n. In this scenario, we assume that the noisy training

set (X,y) = {(xi, yi)|i = 1, . . . , Ntr} is known, where the observed outputs yi are noisy observations
of the true function outputs f(xi).

The joint distribution of the vector of previously observed outputs y, and the vector of
outputs f⇤ we wish to predict at given test inputs X⇤, is given by 2.22.


y
f⇤

�
⇠ N

✓
µy

µf⇤

�
,


K(X,X) + �

2
nI K(X,X⇤)

K(X⇤, X) K(X⇤, X⇤)

�◆
(2.22)

18 2.9. Measuring the Performance of a GP Prediction

The conditional distribution of the function f⇤ conditioned on observed training data
(X,y) is then given by 2.23.

f⇤|X⇤, X, f ⇠ N
�
f̄⇤,K(f⇤, f⇤)

�
(2.23)

where:

f̄⇤ = µf⇤ +K(X⇤, X)[K(X,X) + �
2
nI]

�1(f � µf) is the posterior mean of the GP prediction

K(f⇤, f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X,X)+�
2
nI]

�1
K(X,X⇤) is the posterior covariance matrix

of the GP prediction

2.9 Measuring the Performance of a GP Prediction
The performance of a GP approximation can be measured by comparing the true values of the
function, fi, and the predicted posterior mean values of the function, f̄(xi), at a number of test
points, X = {xi|i = 1, . . . , N⇤}. This is calculated based on the ratio between the Residual Sum
of Squares (RSS) and the Total Sum of Squares (TSS), as in Eqn. 2.24.

ScoreGP =

8
><

>:

1� RSS
TSS if RSS > 0 and TSS > 0

1 if RSS = TSS = 0

0 if RSS > 0 and TSS = 0

(2.24)

where:

RSS =
PN⇤

i=1(fi � f̄(xi))2 is the Residual Sum of Squares (RSS)

TSS =
PN⇤

i=1(fi � E(f))2 is the Total Sum of Squares (TSS)

E(f) is the mean of all true function values f = {f(xi)|i = 1, . . . , N⇤}

2.10 Computing the First-Order Derivative of the Posterior
Mean

For the purposes of implementing GP-modeled functions in an optimal control problem using a
gradient-based optimization method, we will need to compute the first-order derivative of the
posterior mean at an arbitrary test-point x⇤, rf̄(x⇤). In this work, two approaches are utilized:
the finite-difference method and the closed-form expression for the first-order derivative of the
posterior mean (see [41]), where the former is used to validate the latter.

2.10.1 Finite-Difference Method

The gradient of the posterior mean of a GP, for any covariance kernel, can be calculated with the
finite-difference method as in Eqn. 2.25.

rf̄(x⇤) =
1

2�

2

6664

f̄(x⇤ + [�, 0, . . . , 0]T)� f̄(x⇤ � [�, 0, . . . , 0]T)
f̄(x⇤ + [0, �, . . . , 0]T)� f̄(x⇤ � [0, �, . . . , 0]T)

...
f̄(x⇤ + [0, 0, . . . , �]T)� f̄(x⇤ � [0, 0, . . . , �]T)

3

7775
(2.25)

where � is an incremental difference constant.

Chapter 2. Gaussian Processes 19

2.10.2 Closed-Form First-Order Derivative of the Posterior Mean

The gradient of the posterior mean of a GP using a SE kernel can be analytically calculated with
Eqn. 2.26.

rf̄(x⇤) = �diag(l2)�1[x⇤ � x1, . . . ,x⇤ � xNtr]
�
K(X,x⇤)�K(X,X)�1(y � µy)

�
(2.26)

where:

� represents an element-wise product

xi is the i
th point (row) of the input training data X

y is the mean of the observed target values

2.11 Reproducing Kernel Hilbert Spaces
Reproducing kernel Hilbert spaces (RKHS) define a Hilbert space (see Def. 2.11.2) of sufficiently-
smooth functions corresponding to a given positive semi-definite kernel k (see [38] Sec. 6.1). In
this section we will provide definitions key to understanding these function spaces and how they
relate to Gaussian Processes.

Definition 2.11.1 (Inner Product). An inner product h·, ·i : X ⇥ X ! F maps the vector space
X to the scalar space F and satisfies the following conditions:

1. Conjugate Symmetry:

hx1,x2i = hx2,x1i 8x1,x2 2 X (2.27)

2. Bilinearity:

h↵x1 + �x2,x3i = ↵hx1,x3i+ �hx2,x3i 8x1,x2,x3 2 X , 8↵,� 2 R (2.28)

3. Positive Definiteness:

hx,xi � 0 8x 2 X
hx,xi = 0, x = 0

(2.29)

Definition 2.11.2 (Hilbert Space [39]). A Hilbert space H is an inner product space (i.e. a
space of real functions f defined on an index set X and endowed with inner product h·, ·iH that is
complete and separable with respect to the norm defined by the inner product kfk

H
=
p
hf, fiH.

Definition 2.11.3 (Reproducing Kernel). The function k(·, ·) is a reproducing kernel of a Hilbert
space H if 8 f 2 H, f(x) = hk(x, ·), f(·)iH
Definition 2.11.4 (Reproducing Kernel Hilbert Space [39]). A reproducing kernel Hilbert space
(RKHS) is a Hilbert space Hk with a reproducing kernel k whose span is dense in Hk (i.e. every
function f 2 Hk is either in span(k) or is a limit point of span(k)). Equivalently, a RKHS can
be defined as a Hilbert space of functions with all evaluation functionals (i.e all possible function
outputs) bounded and linear.

Theorem 2.11.5 tells us that a RKHS Hk uniquely determines a kernel k, and vice-versa.

Theorem 2.11.5 (Moore-Aronszajn Theorem, [42]). Let X be an index set. Then for every
positive definite function k(·, ·) on X ⇥ X there exists a unique RKHS, and vice-versa.

Let f(x) =
PN

i=1 fi�i(x) be the eigenexpansion of the function f . If we sample the
coefficients fi from a Gaussian distribution N (0,�i) and N is infinite, we can consider that the
infinite collection of random variables f1, f2, . . . is a Gaussian Process with zero mean and variances
�1,�2, Although the sample functions of f are not in the RKHS Hk (unbounded functional
evaluation for N =1), the posterior mean of f given some observed data E will lie in the RKHS.
A function in a RKHS can thus be modeled by a GP.

20 2.12. Gaussian Processes for Dynamic State Functions

2.12 Gaussian Processes for Dynamic State Functions

This section outlines the mathematical framework required to model a number of dynamic state
functions as GPs.

Consider a collection of D arbitrary controllable devices, where the state dynamics of
each controllable device d depends on the n

d
x current states, nd

u control inputs and n
d
w exogenous

disturbances. This relationship can be modeled by a number of Gaussian Processes, one for each
state i = 1, . . . , nd

x. The dynamics of each state i of a single device d can thus be estimated
by forming a prior of the state, building a training set of noisy input samples to, and output
samples from, the true system and calculating the posterior distribution of the state given the
training data. The known function h

d
i represents the known or assumed terms in the dynamic

state function while the unknown nonlinear function g
d
i represents the black-box terms. With this

formulation, we can employ Gaussian Processes to only estimate the unknown contributions to the
dynamic state function as outlined in 2.30.

When a GP-modeled dynamic state function is employed by a MPC scheme, it is used
to predict the behavior of the system over a finite number of future time-steps. Recall that the
output of the GP is a distribution rather than a scalar value. Therefore, if the system states
resulting from GP predictions are recursively fed to the GP model beyond the first time-step, the
predicted system outputs will become progressively more complex as the uncertainty (as measured
by the prediction variance) is propagated through the horizon. The zero-variance method, in which
the posterior mean values of the GPs are used to predict system behavior over the horizon, does
not propagate uncertainty and was shown in [43] to achieve sufficient prediction accuracy when
compared to the alternative Monte-Carlo method of uncertainty propagation. The zero-variance
method was therefore chosen to simulate the response of the system in the MPC scheme proposed
in this work.

Chapter 2. Gaussian Processes 21

x
d
k+1,i := f

d
i (z

d
k) = h

d
i (z

d
k)| {z }

known state prior

+ g
d
i (z

d
k)| {z }

unknown state variation
(2.30a)

Measurement Gaussian Noise,  ⇠ N (0,�2
n,gd

i
) (2.30b)

Noisy Measured State, x̃d
k,i := x

d
k,i +  (2.30c)

Noisy Measured State Vector, x̃d
k,i 2 Rnd

x :=
⇥
x̃
d
k,i | i = 1, . . . , nd

x

⇤T (2.30d)

Input Training Data Point, zdk 2 Rnd
x+nd

u+nd
w :=

h
x̃d
k
T
,ud

k
T
,wd

k
T
iT

(2.30e)

Input Training Data Set, Zd 2 RNtr⇥(nd
x+nd

u+nd
w) :=

�
zdt | t = 1, . . . , Ntr

(2.30f)

Output Training Data Point, g̃dk,i := x̃
d
k,i � h

d
i (z

d
k) (2.30g)

Output Training Data Set, g̃d
i :=

�
g̃
d
i,t | t = 1, . . . , Ntr

(2.30h)

Training Data Set,
�
Z

d
, g̃d

i

�
(2.30i)

Input Test Data Point, zdk⇤ :=
h
x̃d
k⇤

T
,ud

k⇤
T
,wd

k⇤
T
iT

(2.30j)

Input Test Data Set, Zd
⇤
:=
�
zdt,⇤ | t = 1, . . . , N⇤

(2.30k)

Joint Gaussian Probability Distribution,

gd
i

gd
i⇤

�
⇠ N

0,

"
K(Zd

, Z
d) + �

2
n,gd

i
I K(Zd

, Z
d
⇤
)

K(Zd
⇤
, Z

d) K(Zd
⇤
, Z

d
⇤
)

#!
(2.30l)

(Marginalized) Posterior Gaussian Distribution,

gd
i⇤|Zd

,gd
i , Z

d
⇤
⇠ N

�
ḡd
i⇤,K(gd

i⇤,g
d
i⇤)
� (2.30m)

Posterior Mean,

ḡd
i⇤ := E[gdi⇤|Zd

, g
d
i , Z

d
⇤
] = K(Zd

⇤
, Z

d)[K(Zd
, Z

d) + �
2
n,gd

i
I]�1gd

i

(2.30n)

Posterior Variance,

K(gd
i⇤,g

d
i⇤) := K(Zd

⇤
, Z

d
⇤
)�K(Zd

⇤
, Z

d)[K(Zd
, Z

d) + �
2
n,gd

i
I]�1

K(Zd
, Z

d
⇤
)

(2.30o)

where �
2
n,gd

i
is the variance associated with the state feedback measurements of device

d, state i and k is the absolute time-step in the simulation.

2.13 Gaussian Processes for Cost Functions

This section outlines the mathematical framework required to model a number of cost functions
as GPs.

Again, consider a collection of D arbitrary controllable devices, where the cost to the
user (or the user dissatisfaction function) of each device depends on the n

d
x current states, n

d
u

control inputs and n
d
w exogenous disturbances. Similar to the dynamic state case, this relationship

can be modeled by a single Gaussian Process for each device. The cost to the user of a single
device d can thus be estimated by forming a prior of the cost function, building a training set of
inputs and perceived cost samples from user feedback, and calculating the posterior distribution
given the training data. The known function m

d represents the known terms in the cost function
while the unknown function j

d represents the black-box function terms. With this formulation, we
can employ the Gaussian Processes to estimate unknown contributions to the a stage cost function
which is representative of user dissatisfaction, as outlined by 2.31.

22 2.14. Integrating GP Models with the MPC Scheme

l
d
k := l

d(zdk) = m
d(zdk)| {z }

known stage cost prior

+ j
d(zdk)| {z }

unknown stage cost variation
(2.31a)

Input Training Data Point, zdk 2 Rnd
x+nd

u+nd
w :=

h
x̃d
k
T
,ud

k
T
,wd

k
T
iT

(2.31b)

Input Training Data Set, Zd 2 RNtr⇥(nd
x+nd

u+nd
w) :=

�
zdt | t = 1, . . . , Ntr

(2.31c)

Measurement Gaussian Noise,  ⇠ N (0,�2
n,jd) (2.31d)

Noisy Measured Cost, l̃dk := l
d
k +  (2.31e)

Output Training Data Point, j̃dk := l̃
d
k �m

d(zdk) (2.31f)

Output Training Data Set, j̃d :=
�
j̃
d
t | t = 1, . . . , Ntr

(2.31g)

Training Data Set,
⇣
Z

d
, j̃d
⌘

(2.31h)

Input Test Data Point, zdk⇤ :=
h
x̃d
k⇤

T
,ud

k⇤
T
,wd

k⇤
T
iT

(2.31i)

Input Test Data Set, Zd
⇤
:=
�
zdt,⇤ | t = 1, . . . , N⇤

(2.31j)

Joint Gaussian Probability Distribution,

jd

jd
⇤

�
⇠ N

✓
0,


K(Zd

, Z
d) + �

2
n,jdI K(Zd

, Z
d
⇤
)

K(Zd
⇤
, Z

d) K(Zd
⇤
, Z

d
⇤
)

�◆ (2.31k)

(Marginalized) Posterior Gaussian Distribution,

jd
⇤
|Zd

, ld, Zd
⇤
⇠ N

�̄
jd
⇤
,K(jd

⇤
, jd

⇤
)
� (2.31l)

Posterior Mean,

j̄d
⇤
:= E[jd

⇤
|Zd

, l
d
, Z

d
⇤
] = K(Zd

⇤
, Z

d)[K(Zd
, Z

d) + �
2
n,jdI]

�1jd
(2.31m)

Posterior Variance,

K(jd
⇤
, jd

⇤
) := K(Zd

⇤
, Z

d
⇤
)�K(Zd

⇤
, Z

d)[K(Zd
, Z

d) + �
2
n,jdI]

�1
K(Zd

, Z
d
⇤
)

(2.31n)

where �
2
n,jd is the variance associated with the cost measurements of user d and k is

the absolute time-step in the simulation.

2.14 Integrating GP Models with the MPC Scheme
There are a few possible approaches to defining the known state prior h

d
i . One approach (and the

one adopted in this work) is to set it to 0 and to use the GP to estimate the entire function. If
an approximated physics-based model is available, then a second approach is to set the prior to
a linearized version of the dynamic system model with assumed parameters or to an established
nonlinear synthetic model. A third approach, is to set the prior to the current state and to use the
GP to estimate the change in the state i.e. h

d
i (z

d
k) := x

d
i,k and g

d
i (z

d
k) models x

d
i,k+1 � x

d
i,k.

There are also several approaches to setting the prior over the cost functions. In this
work, we set the prior to 0 and use the GP to estimate the entire function i.e. m

d(zdk0
) := 0 and

j
d(zdk0

) models l
d.

Care should be taken in defining how the training data is collected and how the covari-
ance matrix K(X,X) + �

2
nI is inverted. The majority of the computational burden required to

make predictions with a GP is involved in inverting this matrix, which can be minimized by limiting
the number of training samples and by limiting how frequently the inversion must take place, or
by exploiting sparsity properties of the covariance matrix. One approach is to collect system/user
feedback data online until a pre-defined number of samples has been reached. The advantage of
such an approach is that once all of the data has been collected, the covariance matrix can be
inverted once, stored, and used as needed. Another approach (and the one adopted in this work)

Chapter 2. Gaussian Processes 23

is to initially train the GPs offline with Ntr,0 training points, and to subsequently train the GPs
with new system/user feedback in real-time up to a maximum of Ntr training points. A challenge
to address in this approach is how to select new samples and how to discard existing samples once
Ntr has been reached. In this work, a new feedback sample is only added to the training set if the
standard deviation of the prediction at that point exceeds a pre-defined threshold, and the oldest
sample is discarded to make space for it. The advantage of this approach is that the training set
may reflect recent trends in the input-output data, but the drawback is that less-recent samples
which contributed to the accuracy of the model in relatively unexplored input regions may be
discarded. When the training data is augmented online like this, the covariance matrix is inverted
and stored until the next datum of system/user feedback is received. This approach facilitates an
adaptive control scheme in which the dynamic state models are initially defined with a given mini-
mum number of training samples Ntr,0 and are subsequently adapted with a sliding window set of
Ntr �Ntr,0 training samples as the control scheme is executed. The effect of this sliding-window
online subset of training data is to fine-tune the accuracy of a GP over a particular input region
as the control trajectory moves towards and through that region.

The GP model is of limited use given test values which deviate greatly from the available
training data. For this reason we set dynamic constraints on the states and inputs of the MPC
problem developed in Chapter 3, such that the states and inputs may not take on values outside of
the upper and lower bounds observed in their respective dimensions of the training dataset. This
does not guarantee that the feasible sets are subsets of the training dataset but that at least some
of the input variables intersect with the training dataset.

24 2.14. Integrating GP Models with the MPC Scheme

(a) Prior Distribution over Functions

(b) Posterior Distribution over Functions for
Ntr = 3

(c) Posterior Distribution over Functions for
Ntr = 12

Figure 2.2: Given a true function to approximate, f = sin(x), Fig. 2.2a shows the prior distribution
before any training data has been observed and Fig. 2.2b shows the posterior distribution once 3
noisy samples have been observed, Fig. 2.2c shows the posterior distribution once 12 noisy samples
have been observed. Note the high variance along regions of the input space where no training
data has been observed (unexplored regions) and the negligible variance in the neighborhood of
the training points in Fig. 2.2b and 2.2c.

Chapter 3

Model Predictive Control with

Gaussian Process Regression

In this chapter, the theoretical fundamentals of batch and real-time Model Predictive Control
strategies combined with GP-learned functions are outlined with pertinent references.

3.1 Discrete-Time Model Predictive Control
Model predictive control (MPC) is an optimal control method for solving a regulation problem
i.e., finding the best control input for a given dynamical system, objectives and constraints. The
dynamic state model f is used to forecast system behavior over a given time horizon N and to
optimize that predicted forecast over all possible horizon control inputs u0, . . . ,uN�1 [44].

The MPC horizon is divided between multiple stages corresponding to each time-step
k0 + k, where k0 is the absolute time-step and k = 0, 1, . . . , N � 1 is the control horizon time-step.
Each stage has an associated dynamic state equation, cost function, set of optimization variables
and constraints. The final or terminal stage corresponds to a specific terminal cost function and
terminal set for the terminal states.

The feasible sets for the stage state vectors Xk, stage control input vectors Uk and
terminal state vector Xf can be thought of as implicit constraints on the states and inputs at
each time-step. In general, the constraints on the inputs are hard constraints in that the available
system actuators are designed to operate within strict conditions and this is ensured by enforcing
the inputs to remain within their given feasible sets. In contrast, the constraints on the states
are often soft constraints in that it is preferable for the sake of stability and performance that
the states remain within their given feasible sets, but it is not strictly required. The inequality
constraint functions gk represent time-varying explicit constraints on the system variables. The
key difference between explicit and implicit constraints is that the former is converged towards
with an associated dual variable in the gradient-based optimization method, while the latter is
enforced by the projection operator.

The ideal MPC scheme has an infinite horizon i.e., the cost of a sequence of predicted
states and control-inputs for each time-step in the infinite future is considered. It is clearly not
computationally tractable to optimize over an infinite number of variables. The alternative ap-
proach employed is to define a terminal constraint set Xf and a terminal cost function lf : Rnx 7! R
which are imposed to approximate the effects of the constraints and cost over the remainder of the
infinite control horizon.

Measuring disturbances introduces non-negligible delays and updating the control in-
puts requires actions that are implemented on digital control units. In discrete-time MPC (DTMPC),
the temporal axis is discretized. This approach is applicable to systems in which the states are
estimated and the control inputs applied at discrete time instances. If the MPC sample time
�t > 0 is chosen to be sufficiently small, the behavior on time-scales shorter than this interval

25

26 3.1. Discrete-Time Model Predictive Control

can be safely ignored. A difference equation xk+1 = f(·) is used as the causal (i.e. dependent on
past or current states, inputs and disturbances only) discrete-time dynamic state model. While an
auto-regressive function can be modeled i.e. a difference equation that considers historic states,
inputs and disturbances up to a given time-lag, in this work the simplified difference equation,
xk+1 = f(x̃k,uk;wk) is assumed. This relationship implies that the next state is a function of the
current observed states x̃k, the current implemented control inputs uk and the current imposed
exogenous inputs wk. The sample number k 2 N is a nonnegative integer which relates to the
continuous time variable t as t = k�t. The MPC optimal control problem is used to find the
optimal set of control inputs over a full horizon such that the states and control inputs satisfy the
implicit and explicit constraints, using a model of the system to predict its behavior. The optimal
control input vector corresponding to the first time-step, u?

0, is then applied to the system, the
outputs yk are measured and the state vector is estimated as x̃k. This process is illustrated in
Fig. 3.1 and the equivalent optimal control problem is mathematically formulated in 3.1.

Figure 3.1: Model Predictive Control Block Diagram

min
{xk}

N
k=1,{uk}

N�1
k=0

L
�
{xk}Nk=1, {uk}N�1

k=0

�
:=

N�1X

k=0

l(xk,uk) + lf (xN) (3.1a)

s.t. x0 = x(t) (3.1b)
xk+1 = f(xk,uk;wk) for k = 0, . . . , N � 1 (3.1c)
xk 2 Xk for k = 0, . . . , N � 1 (3.1d)
uk 2 Uk for k = 0, . . . , N � 1 (3.1e)
xN 2 Xf (3.1f)
gk,j(xk)  0 for k = 1, . . . , N ; j = 1, . . . , ng (3.1g)

where:

xk 2 Rnx is the state vector at time-step k

uk 2 Rnu is the (controllable) control input vector at time-step k

wk 2 Rnw is the (uncontrollable) disturbance vector at time-step k

x0 2 Rnx is the given initial state vector

x(t) is the true initial state, as measured from the true system

xN 2 Rnx is the terminal state vector of the system at the final time-step of the horizon k = N

f : Rnx+nu+nw 7! Rnx is the discrete dynamic state function

Xk ✓ Rnx is the time-varying implicit state feasible set at time-step k

Chapter 3. Model Predictive Control with Gaussian Process Regression 27

Uk ✓ Rnu is the time-varying implicit control input feasible set at time-step k

Xf ✓ Rnx is the implicit terminal state feasible set

L : RN(nx+nu+nw) 7! R is the cost (or objective) function to be minimized over all horizon state
vectors {xk}Nk=1 and control input vectors {uk}N�1

k=0

l : Rnx+nu+nw 7! R is the time-invariant stage cost to be minimized over the stage state vector
xk and input vector uk at each time step k = 0, . . . , N � 1 in the horizon

lf : Rnx 7! R is the time-invariant terminal cost to be minimized over the terminal states xN

gk,j : Rnx 7! R is the j
th time-varying explicit inequality constraint at time-step k

The objective of a Model Predictive Controller is to design a control law 3.2:

{uk}N�1
k=0 = ({xk0}kk0=0) (3.2)

such that the system described by the auto-regressive dynamic model 3.3

xk+1 = f({xk0}kk0=1, {uk0}kk0=0;x0, {wk0}kk0=0) (3.3)

and the control law 3.2 satisfy the following criteria:

1. The state vector x̂k and the input vector ûk at each time-step k 2 [0, N] satisfy their implicit
and explicit constraints i.e:

x̂k 2 Xk 8 k = 1, . . . , N (3.4a)
x̂N 2 Xf (3.4b)
ûk 2 Uk 8 k = 0, . . . , N � 1 (3.4c)

gk,j(x̂k)  0 8 k = 1, . . . , N ; j = 1, . . . , ng (3.4d)

In the receding horizon context of MPC, we wish to achieve recursive feasibility - the guar-
anteed existence of a feasible control input sequence at all time-steps k � 0 when starting
from a feasible initial state x̂0.

2. The system is stable in the sense of Lyapunov i.e., if x̄ is an equilibrium point such that
f(x̄) = x̄ and for every perturbation of xk from that equilibrium point for which the norm of
the perturbation is upper-bounded by ✏ > 0, there exists a scalar � such that if the normed
distance of the initial state from the equilibrium point is bounded by �, the normed distance
of all subsequent states from the equilibrium points is bounded by ✏ i.e.:

8 ✏ > 0 9 � > 0 s.t. if kx0 � x̄k < � ! kxk � x̄k < ✏ 8 k � 0 (3.5)

Intuitively, this means that given that the initial state x0 of the system is within a given
radius � of the equilibrium point, the control law can eventually bring the state to within
any desired distance ✏ of the equilibrium point.

We wish to design a stabilizing control law such that 3.5 holds. However, a control law may
be stabilizing but not robustly stabilizing. That is to say that arbitrary perturbations (or
disturbances) could destabilize the system. A robustly stable controller is, in addition, stable
for a given set of stochastic perturbations of the system.

3. The control law optimizes performance, as defined by a minimal cost function.

4. The set of initial states that can satisfy the above conditions, {x0 |Conditions 1 � 3} is
maximized.

28 3.1. Discrete-Time Model Predictive Control

Uncertainty is introduced into the MPC problem when a system is time-varying in
unpredictable ways, i.e. the cost function, constraints and/or system model change over time.
Adaptive control is an approach to prevent performance and safety degradation resulting from
model and objective uncertainty over time. However, adaptive control can introduce complex
dynamics, requires a framework for updating the various components of the MPC and may require
time-varying parameters. On the other hand, non-adaptive control assumes static MPC functions
and parameterization, and is thus simpler to implement, but may be ineffective in a time-varying
context.

Let z0 := u0 be the initial stage variables for k = 0, let zk := [xk
T
,uk

T]T be the
stage variables for k = 1, . . . , N � 1 and let zN := xN be the terminal variables for k = N we
optimize over. Note that the initial state vector x0 and the disturbances wk at each time-step k

are passed to the relevant functions as parameters because we take them as given and as such do
not include them in the set of optimization variables. Let [gk,1(xk), . . . , gk,ng (xk)] be the explicit
inequality constraints associated with the states at time-step k. Additionally, the stage cost and
terminal cost functions are assumed to be equivalent. Let yk be a vector of outputs at time-step k

which is obtained from the function y(zk) and which is associated with a known stage cost function
l
0(yk) and time-varying explicit inequality constraints [g0k,1(yk), . . . , g0k,n0

g
(yk)] for each time-step

k. We assume that the dynamic state function f(zk;x0,wk) and a part of the stage cost l(zk) be
unknown functions, which we replace with their posterior mean values, f̄(zk;x0,wk) and l̄(zk),
respectively. The MPC with Gaussian Processes can then be formulated as in 3.6.

min
{zk}

N
k=0

L
�
{zk}Nk=0

�
:=

NX

k=0

2

64 l̄(zk)| {z }
unknown stage cost

+ l
0
k(yk)| {z }

known stage cost

3

75 (3.6a)

s.t. x0 = x(t) (3.6b)
xk+1 = f̄(zk;x0,wk)| {z }

unknown dynamic state

for k = 0, . . . , N � 1
(3.6c)

xk 2 Xk for k = 0, . . . , N � 1 (3.6d)
uk 2 Uk for k = 0, . . . , N � 1 (3.6e)
xN 2 Xf (3.6f)
gk,j(xk)  0 for k = 1, . . . , N ; j = 1, . . . , ng (3.6g)
yk = y(zk;wk) for k = 0, . . . , N (3.6h)
g
0
k,j(yk)  0 for k = 1, . . . , N ; j = 1, . . . , n0

g (3.6i)

where:

f̄ : Rnx+nu+nw 7! Rnx is the GP posterior mean of the unknown discrete-time dynamic state
function

l̄ : Rnx+nu+nw 7! R is the the GP posterior mean of the unknown stage cost function

l
0 : Rny 7! R is the known stage cost function

yk 2 Rny is the vector of system outputs at time-step k

y : Rnx+nu+nw 7! Rny is the known system output function

gk,j : Rnx 7! R is the j
th time-varying inequality constraint function associated with the system

states

g
0
k,j : Rny 7! R is the j

th time-varying inequality constraint function associated with the system
outputs

Chapter 3. Model Predictive Control with Gaussian Process Regression 29

3.2 Regularized Lagrangian Primal-Dual Gradient Optimiza-
tion

We can optimally solve the MPC problem given in 3.6 with a regularized primal-dual optimization
method implemented with a batch approach, or sub-optimally with an online (a.k.a tracking)
approach (see [45] for a review of related time-varying optimization techniques). In this section, we
will outline the theory behind this gradient-based optimization method and describe the algorithm.
In the batch approach, the iterative algorithm is run for an arbitrarily large number of iterations
until convergence is reached i.e. until the L2-norm of the difference between the optimization
variables in sequential iterations falls below a given threshold, resulting in a locally optimal solution.
In this section, we will outline the theory behind this optimization method and provide our reasons
for employing it.

3.2.1 Strong Convexity

We define a strongly convex function as in Def. 3.2.1.

Definition 3.2.1 (Strong Convexity, [46] Sec. 5.2). A function f : E 7! [�1,1) is called �-
strongly convex for a given � > 0 if dom(f) is convex and the following inequality holds for any
x,y 2 dom(f) and � 2 [0, 1]:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y)� �

2
�(1� �) kx� yk2 (3.7)

where:

E is the underlying Euclidean set, i.e. the L2-norm of x is defined as kxk :=
p
hx,xi for x 2 E

Def. 3.2.1 can be easily adapted to strongly concave functions by changing the signs
of the terms in the inequality. We wish to have an objective function (the regularized Lagrangian
function in our case) that is strongly convex in the primal variables (over which it is minimized)
and strongly concave in the dual variables (over which it is maximized) in order to guarantee the
existence and uniqueness of an optimizer, as stated by Theorem 3.2.2.

Theorem 3.2.2 (Existence and Uniqueness of a Minimizer of Closed Strongly Convex Functions,
[46] Theorem 5.25). Let f : E 7! (�1,1] be a proper, closed and �-strongly convex function (for
� > 0). Then:

a) f has a unique minimizer

b) f(x)� f(x?) � �
2 kx� x?k2 for all x 2 dom(f), where x? is the unique minimizer of f .

A convex function f is continuous at points in the interior of its domain, int(dom(f)),
as stated by Theorem 3.2.3.

Theorem 3.2.3 (Local Lipschitz Continuity of Convex Functions, [47] Theorem 7.36). Let C ✓ E
be a nonempty convex set. Let B[x0, ✏] be a norm ball centered at x0 with radius ✏. Let f : E 7!
(�1,1] be a convex function. Let x0 2 int(dom(f)). Then there exist ✏ > 0 and L > 0 such that
B[x0, ✏] ✓ C and:

|f(x)� f(x0)|  L kx� x0k (3.8)

for all x 2 B[x0, ✏].

In general, convex functions are not continuous at their boundary points. However, the
class of univariate closed and convex functions are continuous over their entire domain, as stated
by Theorem 3.2.4.

30 3.2. Regularized Lagrangian Primal-Dual Gradient Optimization

Theorem 3.2.4 (Continuity of Closed Convex Univariate Functions, [46] Theorem 2.22). Let
f : R 7! (�1,1] be a proper closed and convex function. Then f is continuous over dom(f).

We can exploit Theorems 3.2.2 - 3.2.4 to apply a gradient-based optimization method
to optimize a regularized Lagrangian function, as explained in Sec. 3.2.6. We will first define the
general gradient method in Sec. 3.2.2, the projected gradient method in Sec. 3.2.3 and the dual
problem in Sec. 3.2.4.

3.2.2 The Gradient Method

Consider the unconstrained optimization problem 3.9.

min f(x) |x 2 E (3.9)

If f is differentiable over x, a well-established method for solving this problem is the
gradient method, described by Algorithm 1.

Algorithm 1 Gradient Method
Input Tolerance parameter, ⌫ > 0

Initialization Pick initial state x0 2 Rn arbitrarily

General Step

for ⌧ = 1, 2, . . . do

Pick a step-size ↵⌧ > 0
Set x⌧+1 x⌧ � ↵⌧rf(x⌧)
if krf(x⌧+1)k  ⌫ then

return x⌧+1

The negative of the function gradient �rf(x⌧) is called the descent direction and is
defined in Def. 3.2.5.

Definition 3.2.5 (Descent Direction, [46] Sec. 8.1.1). Let f : E 7! (�1,1] be an extended real-
valued function. Let x 2 int(dom(f)). A vector 0 6= d 2 E is called a descent direction of f if the
directional derivative f

0(x;d) exists and is negative.

A key property of a descent direction is that updating the optimization variables x
along this direction in sufficiently small steps will lead to a decrease in the function value f(x), as
stated by Lemma 3.2.6.

Lemma 3.2.6 (Descent Property of Descent Directions, [47] Lemma 4.2). Let f : E 7! (�1,1]
be an extended real-valued function. Let x 2 int(dom(f)), and assume that 0 6= d ✓ E is a descent
direction of f at x. Then there exists ✏ > 0 such that x+ ↵d 2 dom(f) and

f(x+ ↵d) < f(x) (3.10)

for any ↵ 2 (0, ✏].

3.2.3 The Projected Gradient Method

An extension of the gradient method to solve constrained optimization problems is the projected
gradient method, described by Algorithm 2. In this case, each iteration ⌧ consists of a step taken
along the negative direction of the gradient rf(x⌧) followed by an orthogonal projection onto the
underlying set C (see 3.11). The projection ensures that subsequent iterates x⌧+1 are contained
by their feasible set C.

Chapter 3. Model Predictive Control with Gaussian Process Regression 31

PC(x) = argmin
y2C

ky � xk (3.11)

Algorithm 2 Projected Gradient Method
Input Tolerance parameter, ⌫ > 0

Initialization Pick initial state x0 2 C arbitrarily

General Step

for ⌧ = 1, 2, . . . do

Pick a step-size ↵⌧ > 0
x⌧+1 PC(x⌧ � ↵⌧rf(x⌧))
if krf(x⌧+1)k  ⌫ then

return x⌧+1

3.2.4 The Dual Problem

This section draws from [48] Chapter 5. Consider the constrained optimization problem in 3.12.

min
x2D

f0(x) (3.12a)

s.t. fi(x)  0 8 i = 1, . . . ,m (3.12b)
hi(x) = 0 8 i = 1, . . . , p (3.12c)

where:

x 2 Rn are the optimization variables

f(x?) is the optimal value

D =
Tm

i=0 dom(fi) \
Tp

i=1 dom(hi) is the nonempty domain of feasible values of x

We can implicitly take the constraints 3.12b - 3.12c into account by defining the La-
grangian function associated with problem 3.12, which is the original objective function augmented
with a weighted sum of the constraint functions, given by 3.13.

L(x,�,µ) := f0(x) + �T

2

64
f1(x)

...
fm(x)

3

75+ µT

2

64
h1(x)

...
hp(x)

3

75 (3.13)

where:

� 2 Rm are the dual variables or Lagrangian multipliers associated with the inequality constraints
f1(x), . . . , fm(x)

µ 2 Rp are the dual variables or Lagrangian multipliers associated with the equality constraints
h1(x), . . . , hp(x)

The Lagrangian dual function (or simply the dual function) is defined as the minimum
value of the Lagrangian over the decision variables x, given by 3.14.

32 3.2. Regularized Lagrangian Primal-Dual Gradient Optimization

g(�,µ) := inf
x2D

L(x,�,µ) = inf
x2D

0

B@f0(x) + �T

2

64
f1(x)

...
fm(x)

3

75+ µT

2

64
h1(x)

...
hp(x)

3

75

1

CA (3.14)

Notice that since 3.14 is the pointwise infimum (over x) of a family of affine functions
of the dual variables (�,µ), it is a concave function (see Appendix C.1), even if the primal problem
3.12 is non-convex (see Appendix C.2).

Assuming that � ⌫ 0, it can be shown that the dual function yields a lower bound on
the optimal value of the primal problem. Let x̃ be a feasible point for the problem 3.12, such that
fi(x̃)  0 8 i = 1, . . . ,m and hi(x̃) = 08 i = 1, . . . , p. Then:

�T

2

64
f1(x̃)

...
fm(x̃)

3

75

| {z }
0

+µT

2

64
h1(x̃)

...
hp(x̃)

3

75

| {z }
=0

 0 (3.15)

If we add the feasible objective function f0(x̃) to each side we have an inequality constraint on the
Lagrangian function:

L(x,�,µ) = f0(x̃) + �T

2

64
f1(x̃)

...
fm(x̃)

3

75+ µT

2

64
h1(x̃)

...
hp(x̃)

3

75  f0(x̃)

) L(x,�,µ)  f0(x̃)

(3.16)

The dual function is the lower bound of the Lagrangian over all primal variables by
definition, so we have:

g(�,µ) = inf
x2D

L(x,�,µ)  L(x̃,�,µ)  f0(x̃)

) g(�,µ)  f0(x̃)

) g(�,µ)  f0(x
?)

(3.17)

Note the significance of the positive definite constraint on the inequality dual variables.
In order for the dual function 3.14 to give a finite (> �1) lower bound on the original problem,
we must have dual feasible Lagrangian multipliers i.e. � ⌫ 0 and �,µ 2 dom(g).

The objective of the dual problem is to find the worst-case lower bound on the original
objective function f0(x), or in other words, to maximize the dual function over the dual feasible
Lagrangian multipliers. This is formulated by the Lagrangian dual problem in 3.18.

max
�,µ2dom(g)

g(�,µ) (3.18a)

s.t. � ⌫ 0 (3.18b)

The solution of 3.18, (�?
,µ?), are the dual optimal variables. The property 3.17 is

known as weak duality and the (nonnegative) difference f0(x?)� g(�?
,µ?) is known as the duality

gap. If the duality gap is zero i.e. f0(x?) = g(�?
,µ?), then we have the property of strong duality.

Strong duality does not, in general, hold, but under certain conditions it can be show to. One such
qualification is Slater’s condition, which requires that the problem be convex (see Appendix C.2)
and x 2 relint(D) (see [48] Sec. 5.2.3). The significance of strong duality is that the optimal cost
of both the primal problem 3.12 and the dual problem 3.18 are equivalent.

Chapter 3. Model Predictive Control with Gaussian Process Regression 33

Consider now the MPC problem given by 3.6. Let Z be the feasible set for the horizon
optimization variables {zk}Nk=0. Let RN(ng+n0

g)
+ be the nonnegative orthant in RN(ng+n0

g) and the
feasible set for the dual inequality variables � (corresponding to the constraints at each time-step
in the horizon for the system states and for the system outputs). Let the dual equality variables µ
be unconstrained with a feasible set of RNnx (corresponding the dynamic state difference equation
for each state at each time-step in the horizon). A feasible solution to the problem is given by the
Karush-Kuhn-Tucker (KKT) point q̃ := (z̃, �̃, µ̃) 2 Z ⇥RN(ng+n0

g)
+ ⇥RNnx (see Appendix C.3 for

background information on the conditions that must be satisfied by a KKT point). We define the
Lagrangian function for the problem as in Eqn. 3.19.

L(z,�,µ) := L(z) + �T
G(z) + µT

F (z) (3.19)

where:

z 2 RN(nx+nu) is the vector of optimization variables [u0
T
,x1

T
,u1

T
,x2

T
, . . . ,uN�1

T
,xN

T]T ,
also known as the primal variables

L : RN(nx+nu) 7! R is the horizon cost function given by 3.6a

g(x) =

2

66666666666664

g1,1(x1)
...

g1,ng (x1)
g2,1(x2)

...
g2,ng (x2)

...
gN,ng (xN)

3

77777777777775

 0 is the vector of time-varying explicit state inequality constraints

g0(y) =

2

666666666666664

g
0
1,1(x1)

...
g
0
1,n0

g
(x1)

g
0
2,1(x2)

...
g
0
2,n0

g
(x2)
...

g
0
N,n0

g
(xN)

3

777777777777775

 0 is the vector of time-varying explicit system output inequality con-

straints

G(z) =


g(x)
g0(y)

�
is the set of all explicit inequality constraint functions

� 2 RN(ng+n0
g) is the vector of inequality dual variables associated with each explicit inequality

constraint contained in G

F (z) =

2

64
x1 � f̄(z0)

...
xN � f̄(zN�1)

3

75 = 0 is the set of explicit dynamic state equality constraint functions

µ 2 RNnx is the vector of equality dual variables associated with each equality constraint contained
in F

34 3.2. Regularized Lagrangian Primal-Dual Gradient Optimization

3.2.5 Regularized Lagrangian Function

The Lagrangian function is regularized by adding a term that renders the function strongly concave
in the dual variable vectors, see 3.20. This strongly concave regularization is necessary to derive
bounded Q-linear convergence for the tracking error of the real-time gradient-based optimization
algorithm [12].

Lr(z,�,µ) := L(z) + �T
G(z) + µT

F (z)� ✏

2
(k�� �priork+ kµ� µpriork)

| {z }
regularization term

(3.20)

The effect of the regularization term is firstly to ensure a unique solution to the dual
problem and secondly to drive the dual variables � and µ to their prior estimates �prior and
µprior, respectively.

3.2.6 Primal-Dual Gradient Method

In this section, we will first outline the mathematical prerequisites to understanding the primal-dual
gradient method employed in this work and then proceed to describe the algorithm itself.

For a twice continuously differentiable real-valued function f , the Hessian of f(z) at
ẑ is denoted by r2

f(ẑ). For a function f(z) that is continuously differentiable in z, its gradient
with respect to z at ẑ is denoted by r2

zzf(ẑ).
For a continuously differentiable vector-valued function f(z), its Jacobian matrix eval-

uated at ẑ is denoted by Jf (ẑ). Given a convex set C, its normal cone at z 2 C, defined by�
y : yT (c� z)  0, 8 c 2 C

, is denoted by NC(z). It has been established that the projection

operator 3.11 exists and is unique when the underlying set C is nonempty, closed and convex [49].
R+ = [0,+1) and R++ = (0,+1) denote nonnegative and positive real numbers,

respectively. I denotes the identity matrix, or In 2 Rn⇥n when the dimensions need to be specified.
The L2-norm of z is denoted by kzk :=

p
zT z.

We make the following assumptions regarding the optimal control problem 3.6:

Assumption 3.2.7. For the problem 3.6, it holds that:

(3.2.7a) Z := RN(nx+nu) is convex and closed.

(3.2.7b) The functions L and G are twice continuously differentiable over z 2 Z. Additionally,
r2

zzL(z) and r2
zzG(z) are continuous over z 2 Z.

(3.2.7c) There exists a Lipschitz continuous trajectory q? = (z?,�?
,µ?) such that:

((3.2.7c)a) q? 2 Z ⇥ RN(ng+n0
g)

+ ⇥ RNnx

((3.2.7c)b) rzL(z?) + JG,z(z?)T�? + JF,z(z?)Tµ? 2 �NZ(z?)

((3.2.7c)c) G(z?) 2 N
RN(ng+n0

g)

+

(�?)

((3.2.7c)d) F (z?) 2 0

An update is performed at each iteration ⌧ until convergence to a pre-defined tolerance
⌫ or a maximum number of iterations MaxIter is reached.

Let q̂0 = (ẑ0, �̂0, µ̂0) 2 Z⇥RN(ng+n0
g)⇥RNnx be a feasible initial KKT point. The reg-

ularized primal-dual gradient algorithm iteratively updates the vector q̂⌧ as in 3.21. The algorithm
is illustrated in Fig. 3.2.

ẑ⌧ = PZ

h
ẑ⌧�1 � ↵

⇣
rL(ẑ⌧�1) + JG(ẑ⌧�1)

T �̂⌧�1 + JF (ẑ⌧�1)
T µ̂⌧�1

⌘i
(3.21a)

�̂⌧ = P
RN(ng+n0

g)

+

h
�̂⌧�1 + ⌘↵

⇣
G(ẑ⌧)� ✏(�̂⌧�1 � �prior)

⌘i
(3.21b)

µ̂⌧ = µ̂⌧�1 + ⌘↵ (F (ẑ⌧)� ✏(µ̂⌧�1 � µprior)) (3.21c)

Chapter 3. Model Predictive Control with Gaussian Process Regression 35

where:

ẑ⌧ is the primal variable solution at the ⌧
th iteration

↵ is the step-size for the primal variable updates

⌘↵ is the step-size for the dual variable update

✏ is a parameter which controls the amount of regularization on the dual variables

Z := U0 ⇥ X1 ⇥ . . .⇥ UN�1 ⇥ Xf is the feasible set of primal variables

The step-sizes ↵ and ⌘ could be given by vectors, where each element corresponds to
a step-size specific to that dimension of z, � and µ, respectively. In this work, they are left as
scalars for simplicity.

Note that a projected gradient update is applied to the constrained primal variables
z and to the constrained inequality dual variables �, while a non-projected gradient update is
applied to the unconstrained equality dual variables µ.

Figure 3.2: Primal-Dual Batch Optimization Flowchart

Consider a system of D controllable devices, where the dynamic state equation and the
stage cost corresponding to each device are learned using GPs (this is an example of dual control
[50], in which the system is simultaneously being identified and controlled). The algorithm for
integrating the learned functions with the described primal-dual update is given by 3.21.

Before the controller is implemented, each GP (one for each unknown state and each
cost function of each device d in the network), is initialized with a pre-defined number of training
samples Ntr,0. The resulting initial training sets ((Zd

,gd
i) for each state i of each device d and

(Zd
, jd) for each cost function of each device d) are subsequently passed to the controller.

The control system is simulated for T time-steps. At the beginning of each time-step
k0, if the training sampling time has passed for the state (�t

d
x) or cost (�t

d
l) associated with a

device, then the number (depending on how many multiples of the sampling time have passed) of
training points collected from the real-time system/user feedback is added to the online subset of
the appropriate training dataset, which is then truncated to only include the most recent Ntr�Ntr,0

data points. The offline subset of the Ntr,0 training data set is left untouched. With this approach,
we can perform an initial offline training of the functions with Ntr,0 training inputs selected to
capture as much information as possible and retain this input data while we incrementally update
Ntr�Ntr,0 additional training samples during operation based on live feedback. The result is that
the offline subset can explore the input space by capturing a large range of the variability of the
function (if the training samples are distributed carefully) while the online subset can fine-tune

36 3.3. Online Regularized Lagrangian Primal-Dual Gradient Optimization

the training set based on short-term trends by learning more about the input space it is moving
towards and through in real-time from feedback. The hyperparameters ✓ of the covariance kernel
are optimized for by maximizing the marginal log likelihood and the K(X,X) + �

2
nI matrix is

inverted to reflect the new training data. If new device state feedback is available, the device
feasible sets X d and Ud are also updated to partially exclude the unexplored, and thus unsafe,
regions of the updated training set. The primal-dual method is executed until the iterates have
converged or the maximum number of iterations has been reached. The resulting KKT point
(z?,�?

,µ?) is then time-shifted by removing the variables corresponding the the first horizon
stage and repeating the variables corresponding to the terminal stage.

The full MPC with Gaussian Processes and the primal-dual optimization algorithm is
outlined in Algorithm 3. In the batch case, the convergence is terminated once the L2-norm of the
difference between consecutive iterates has fallen below a pre-defined threshold, ⌫. In the online
implementation of this algorithm, described in the next section, the convergence is terminated once
a pre-defined number of iterations, MaxIter has been reached.

3.3 Online Regularized Lagrangian Primal-Dual Gradient Op-
timization

Perfect tracking could be achieved by solving the problem 3.6 to convergence at each time-step (as
in the batch approach described in Sec. 3.2). However, if a) the objectives, constraints, dynamic
state and/or output functions are time-varying and we need to set the MPC sampling time �t to
a scale faster than these variations, or b) an optimized control input is required at a high sampling
rate, there may not be sufficient time available for the algorithm to converge. The optimization
procedure outlined in Sec. 3.2 would not be practical in these cases. Additionally, suppose there is
limited (or burdensome) observability of the disturbances wk on which the outputs yk depend. In
this scenario, we would not be able to compute either the outputs using the closed-form expression
nor their gradients. If the gradient-based algorithm performs only a single iteration however,
we could employ measurements of the outputs ŷ as placeholders for their synthetic functions
y(zk;wk) and employ estimated gradients based on these measurements instead of computing the
true gradients in the gradient-based method. Real-time MPC (illustrated in Fig. 3.3) can be
implemented with an online optimization algorithm, and is an alternative approach which aims
to solve the problem in as few iterations as possible. It is inherently sub-optimal, in that the
optimization algorithm is terminated once a given (typically  100) number of iterations have
been completed, as opposed to terminating the algorithm once the norm of the change in the
iterates has fallen below a given threshold. It is important then, to consider how the algorithm can
be adapted to converge towards the true optimum in as few iterations as possible for each time-
step. In this section, we will describe core concepts of the online implementation of Algorithm 3
proposed in this work.

3.3.1 Tracking Error

Let the horizon cost function L, the explicit inequality constraints G and the explicit equality
constraints F be time-varying, such that at each instance or absolute point in time at which 3.6 is
run, k0 = 0, 1, . . . , T � 1, the functions L, G and F depend on this absolute time-step, see 3.22.

L(z) := Lk0(zk0) (3.22a)
G(z) := Gk0(zk0) (3.22b)
F (z) := Fk0(zk0) (3.22c)

where:

zk0 is the vector of optimization variables at the k0
th instance of the MPC run

Chapter 3. Model Predictive Control with Gaussian Process Regression 37

Algorithm 3 Primal-Dual MPC Algorithm with Gaussian Processes
1: procedure Optimize(

T, MaxIter, ⌫,↵, ⌘, ✏,�prior,µprior, L, F,G,Z, x0;
(Zd

offline,g
d
i),�

2
gd
i ,n

for each state i and each device d;(Zd
offline, j

d),�2
jd,n for each device d)

2: z0 x0 for states, 0 for control inputs . initialize primal variables
3: �0 [0N(ng+n0

g)
] . initialize dual inequality variables

4: µ0 [0Nnx] . initialize dual equality variables
5: for each time-step k0 = 0, 1, . . . , T � 1 do

6: for d = 1, . . . , D do . for each device/user
7: if device d state feedback received then

8: Z
d
online last Ntr �Ntr,0 rows of


Z

d
online

zdk
T

�
. update device d online input

training set

9: Z
d


Z

d
offline

Z
d
online

�
. update device d full input training set

10: for i = 1, . . . , nd
x do . for each device state

11: gd
i,online last Ntr �Ntr,0 rows of


gd
i,online
g
d
k

�
. update device d state i

online output training set

12: gd
i


gd
i,offline

gd
i,online

�
. update device d state i full output training set

13: ✓ argmax✓ log p(g
d
i |Zd

,✓) . optimize for hyperparameters
14: invert K(Zd

, Z
d) + �

2
gd
i ,n

I

15: Zd Zd
orig \ Z

d
. update device state/input feasible sets based on input

training set
16: if user d cost feedback received then

17: Z
d
online last Ntr �Ntr,0 rows of


Z

d
online

zdk
T

�
. update user d cost online input

training set

18: Z
d


Z

d
offline

Z
d
online

�
. update user d cost full input training set

19: jdonline last Ntr �Ntr,0 rows of

jdonline

j
d
k

�
. update user d cost online output

training set

20: jd

jdoffline
jdonline

�
. update user d cost full output training set

21: ✓ argmax✓ log p(j
d|Zd

,✓) . optimize for hyperparameters
22: invert K(Zd

, Z
d) + �

2
jd,nI

23: ⌧ 0
24: while ⌧ < MaxIter do

25: z⌧+1 PZ

⇥
z⌧ � ↵

�
rL(z⌧) + JG(z⌧)T�⌧ + JF (z⌧)Tµ⌧

�⇤
. update primal

variables
26: �⌧+1 P

Rng+n0
g

+

[�⌧ + ⌘↵ (G(z⌧+1)� ✏(�⌧ � �prior))] . update dual inequality

variables
27: µ⌧+1 µ⌧ + ⌘↵ (F (z⌧+1)� ✏(µ⌧ � µprior)) . update dual equality variables

28: if

������

z⌧+1 � z⌧
�⌧+1 � �⌧

µ⌧+1 � µ⌧

������
2

< ⌫ then

29: z? z⌧+1 . assign optimal primal variables
30: �? �⌧+1 . assign optimal dual inequality variables
31: µ? µ⌧+1 . assign optimal dual equality variables
32: break

33: ⌧ ⌧ + 1 . increment iteration count
34: xk+1 ftrue(u?

0) . input optimal first control input into true system to get next state
35: z0 time-shifted z?k . warm-start primal variables
36: �0 time-shifted �?

k . warm-start dual inequality variables
37: µ0 time-shifted µ?

k . warm-start dual equality variables

38 3.3. Online Regularized Lagrangian Primal-Dual Gradient Optimization

Figure 3.3: Primal-Dual Online Optimization Flowchart

Lk0(zk0) is the horizon cost function at the k0
th instance of the MPC run

Gk0(zk0) is the set of explicit inequality constraint functions at the k0
th instance of the MPC run

Fk0(zk0) is the set of explicit equality constraint functions at the k0
th instance of the MPC run

Tracking Error

As a measure of the tracking performance of an online optimization algorithm, we define the
tracking-error 3.23. This represents the running distance between the true optimal solution q?

k0

achieved by running the algorithm to convergence in the batch approach and the sub-optimal
solution q̂k0 generated by truncating the number of iterations in the online approach for absolute
time-steps k0 = 0, 1, . . . , T � 1.

��q̂k0 � q?
k0

��
⌘
=

s
��x̂k0 � x?

k0

��2 + ⌘�1

✓����̂k0 � �?
k0

���
2
+
��µ̂k0 � µ?

k0

��2
◆

(3.23)

While it is a given that the running solution will be sub-optimal and thus have a non-zero tracking
error, the objective is to bound this tracking error.

Tracking Error Bound

We define the temporal variability of the optimization algorithm (adapted to the discrete-time case
from [27, 28]) as in 3.24.

�⌘ := sup
k0,1,k0,22[0,1,...,T�1]

k0,1 6=k0,2

���q?
k0,2
� q?

k0,1

���
⌘

|k0,2 � k0,1|
(3.24)

This quantity can be intuitively thought of as the maximum speed with which the KKT point q?

changes with respect to the norm k·k⌘.
We also define the necessary upper-bound quantities in 3.25 - 3.27:

Chapter 3. Model Predictive Control with Gaussian Process Regression 39

M�µ := sup
k02[0,1,...,T�1]

����


�?
k0

� �prior

µ?
k0

� µprior

����� (3.25)

LGF (�) := sup
k02[0,1,...,T�1]

sup
�z:k�zk�

����


JGk0 ,zk0

(z?k0
+�z)

JFk0 ,zk0
(z?k0

+�z)

����� (3.26)

D(�, ⌘) :=
p
⌘LGF (�) (3.27)

and a quantity to measure the upper-bound nonlinearity of the cost and equality constraint func-
tions with respect to zk0 in 3.28:

ML(�) := sup
k02[0,1,...,T�1]

sup
�z:k�zk�

��D2
zzLk0(z

?
k0

+ z)
�� (3.28)

where:

The bilinear map that maps a pair of vectors (h1, h2) to a vector whose i
th entry is denoted by

h
T
2 �

2
zzfi(zk0)h1 is given by:

D
2
zzfk0(zk0 : (h1, h2)) 7!

�
h
T
2r2

zzfi(zk0)h1

�
i
.

��D2
zzfk0(zk0)

�� := sup
h1,h2 6=0

kD2
zzfk0 (zk0)(h1,h2)k

kh1kkh2k
= sup

kh1k=kh2k=1

��D2
zzfk0(zk0)(h1, h2)

��

We also define the following quantities:

HL,k0(�z) :=

Z 1

0
r2

zzLk0(z
?
k0

+ ✓�z,�?
k0
,µ?

k0
)d✓ (3.29)

⇢
(P)(�,↵, ⌘, ✏) := sup

k02[0,1,...,T]
�z:k�zk�

���
�
I � ↵HL,k(�z)

�2��� (3.30)

⇢(�,↵, ⌘, ✏) :=

"
max

n
⇢
(P)(�,↵, ⌘, ✏), (1� ⌘↵✏)2

o
+ ↵(1� ⌘↵✏)

p
⌘�ML(�)

2

↵
2

0

B@2 sup
k02[0,1,...,T]
�z:k�zk�

��⌘✏I �HL,k(�z)
��D(�, ⌘) +D

2(�, ⌘)

1

CA

#1/2 (3.31)

(�,↵, ⌘, ✏) :=max

⇢
1,

1� ⌘↵✏

⇢(�,↵, ⌘, ✏)
,

p
⌘↵LGF (�)

⇢(�,↵, ⌘, ✏)

�
(3.32)

Theorem 3.3.1 establishes the tracking error bound of the implemented regularized
primal-dual gradient algorithm.

Theorem 3.3.1 ([27] Theorem 3.2, [28] Theorem 2.1). Suppose there exists � > 0, ↵ > 0, ⌘ > 0
and ✏ > 0 such that:

�⌘  (1� ⇢(�,↵, ⌘, ✏))� � (�,↵, ⌘, ✏)
p
⌘↵✏M�µ (3.33)

Let the initial point q̂0 = (x̂0, �̂0, µ̂0) be sufficiently close to the KKT point q?
1 such that:

kq̂0 � q?
1k⌘  �. (3.34)

Then the sequence [q̂k0]
T�1
k0=0 generated by the regularized primal-dual gradient algorithm 3.21 sat-

isfies:
��q̂k0 � q?

k0

��
⌘

⇢(�,↵, ⌘, ✏)�⌘ + (�,↵, ⌘, ✏)

p
⌘↵✏M�µ

1� ⇢(�,↵, ⌘, ✏)

+ ⇢
k0(�,↵, ⌘, ✏)

✓
kq̂0 � q?

1k⌘ �
�⌘ + (�,↵, ⌘, ✏)

p
⌘↵✏M�µ

1� ⇢(�,↵, ⌘, ✏)

◆ (3.35)

40 3.4. Sampling Timeline

for all k0 2 [0, 1, . . . , T � 1]. Moreover, we have:

lim
↵!0+

(�,↵, ⌘, ✏) = 1 and (�,↵, ⌘, ✏) 
p
2 (3.36)

Intuitively speaking, we can say that the slower q?
k0

moves over the course of the control
trajectory, the more likely it is to achieve a smaller tracking error. The proof of Theorem 3.3.1 is
based on Lemma 3.3.2, which establishes Q-linear convergence (defined in Appendix C.4) for the
iterative algorithm given by 3.21. We refer the reader to [27, 28] for the full proofs.

Lemma 3.3.2 ([27] Lemma 3.3, [28] Lemma 2.3). Let k0 2 {0, 1, . . . , T � 1} be an arbitrary
instance in controller execution time. If q̂k0 is generated by 3.21, then:

��q̂k0 � q?
k0

��
⌘
 ⇢(�,↵, ⌘, ✏)

��q̂k0�1 � q?
k0�1

��
⌘
+ (�,↵, ⌘, ✏)

p
⌘↵✏M�µ (3.37)

Under Assumptions 3.2.7, the tracking error bounds in Theorem 3.3.1 still apply to
our case, in which the KKT point trajectory is updated at discrete time-steps, the cost function is
considered to be non-convex and MaxIter � 1 iterations are allowed for each MPC problem to be
solved. Furthermore, in this work we implement the proposed algorithm in the context of real-time
MPC for building control (Sec. 4) and the inverted pendulum problem (Appendix A).

3.3.2 Warm-Starting

One approach to promoting fast convergence of the MPC problem is to transfer the solution from
the problem solved during the preceding time-step to the subsequent one. Warm-starting (related
to the concepts of time-distributed optimization [21] and real-time iteration [22]) involves using an
existing solution approximation as an initial guess for the subsequent MPC optimization problem.
Using this method, it may be possible to track an optimal solution and eventually converge to it,
given very few iterations (or only a single one at the limit) of the optimization algorithm. It has
been used successfully in the building control context in [9] and is explained further in [44] Sec 2.7
and 8.9.

The most basic implementation of warm-starting involves setting the initial iterates to
the solution of the last MPC problem:

q̂k0+1,⌧=0 := [q̂T
k0,k=0, . . . , q̂

T
k0,k=N]T (3.38)

Alternatively, the shift-initialization approach involves shifting the solution back by one time-step
to account for the advancement in time, and appending zero values to the end. In this work
however, we wish to achieve convergence in as few as a single iteration, and so the terminal stage
elements of the initial KKT point are set to the penultimate stage solution:

q̂k0+1,⌧=0 := [q̂T
k0,k=1, . . . , q̂

T
k0,k=N, q̂T

k0,k=N]T (3.39)

Shift-initialization is applicable to problems in which an equidistant temporal-grid is
used for the MPC time-step and for the dynamic state equation discretization, and is particularly
advantageous for time-varying systems. For these reasons we employ it in the real-time control
scheme proposed in this work.

3.4 Sampling Timeline
There are multiple sampling time intervals to consider in Algorithm 3 (illustrated in Fig. 3.4):

• The time-intervals at which the MPC must be executed, �t. This is directly related to the
time-intervals at which optimal or sub-optimal control inputs must be applied to the system
and the shortest time-scale at which the functions of the problem vary. In real-time MPC,
this time-interval is typically shorter than is required for the solution to converge.

Chapter 3. Model Predictive Control with Gaussian Process Regression 41

• The time-intervals at which the user feedback is received and added to the online subset of
the training data of the GP-learned cost functions, �t

d
l , such that sufficiently up-to-date and

accurate approximations are maintained.

• The time-intervals at which the state feedback is received and added to the online subset of
the training data of the GP-learned system models, �t

d
x, such that sufficiently up-to-date

and accurate approximations are maintained.

Consider the case when a real-time controller is required to generate optimal control
inputs at regular discrete intervals in order to respond to new environmental disturbances and
time-varying objectives. In sampling for the user dissatisfaction GPs, it is burdensome for the
user of a device to be frequently queried for feedback. In sampling for the device dynamic state
GPs, while it may require considerable cost or effort to take a dynamic system offline to test for
new training data, training data based on real-time inputs and outputs can be collected during
controller operation. In practice then, the MPC sampling time-interval �t can be relatively short
i.e. on the scale of seconds to minutes, whereas the user dissatisfaction cost GP sampling time-
interval �t

d
l can be relatively long i.e. on the scale of hours to days and the device dynamic

state GP sampling time-interval �t
d
x can be equivalent to �t (but not necessarily, especially if

input-output data is required which is not available at this sampling interval).
It may be the case that periodic offline tests can be conducted to generate a completely

new training set of Ntr,0 samples, such that once the MPC is restarted, the GP-learned functions
have been initialized with new training sets. In our application, this is the case when we initially
launch the MPC - the GPs are pre-trained with Ntr,0 data points before the simulation is begun.
Note that Ntr,0 may vary for different GPs i.e. quadratic or cosine functions require considerably
fewer data points to provide a good approximation compared to other function classes.

Given an initial training set, at each subsequent sampling interval � 1 additional data
points are received from the user or device. These new data points are appended to the online
subset of the training set until it has reached the maximum size of Ntr data points. At this
point, the oldest data points in the online subset (the offline subset is left intact) are replaced
by the newest such that the size of the training set remains constant. With this sliding-window
sampling technique, the computational burden of inverting the covariance matrix does not become
unbounded with an increasing number of training samples, the training data is kept up-to-date
with recent data trends and the GP-learned functions are adapted while the controller is running.

Natural cycles in the system data can be considered when designing the number of
training samples Ntr. For example, in one application of this work, the dynamics of a number
of TCL devices are considered (Chapter 4). The outdoor temperature To, which exhibits an
approximate periodic variation over the time-scale of 1 day, has a significant influence on the
zone temperature T

d, which the MPC is attempting to steer towards a given reference T
d
ref . We

can therefore set the initial size of the training set for these dynamic state functions Ntr,0 to the
equivalent of 1 day (288 samples for data points that are available at 5 minute intervals) such that a
wide range of the typical daily variations are captured by the offline subset, and the maximum size
of the training set Ntr to the equivalent of 1.5 days (432 samples) such that half a day of training
data belongs to the online subset and is constantly evolving based on the system trajectory.

42 3.4. Sampling Timeline

Figure 3.4: Illustration of Asynchronous GP Training Data Collection and MPC Sampling Time-
lines

Chapter 4

Application to Real-Time

Optimization of Energy Systems

In this chapter, we implement the proposed MPC scheme to control a network of distributed
energy devices in a real-time setting, where the device-specific dynamics and the user-specific cost
functions are learned from real-time feedback using Gaussian Processes. All Python code written
for the experiments conducted in this chapter can be found at [51].

Consider a multiuser problem [12] which, for our purposes, is a time-varying constrained
optimization problem characterized by:

• a set of devices and corresponding users,

• feasible sets for the states and inputs of each device,

• a cost function given by the sum of user-specific dissatisfaction functions and an aggregate
cost term based on a coupling metric,

• a collection of convex inequality constraints coupling the device states and inputs.

In our case, the dynamics of each device and the cost incurred on each user are unknown
functions which we need to learn in real-time using GPs. For the purposes of implementing the
primal-dual gradient-based optimization method described in Sec. 3.2 - 3.3, we let the primal
variables z represent the states and inputs of all devices, the dual inequality variables � correspond
to the convex inequality constraints G and the dual equality variables µ correspond to the dynamic
state equality constraints F . The states and inputs of all devices are coupled by the metric y which
has an associated inequality constraint g0(y) (included in G) and known system stage cost l

0(y).

4.1 System Model
Consider an aggregation of devices in a neighborhood or community which consists of D controllable
devices and W uncontrollable devices, similar to the case studies in [13, 14, 29]. In our case
the controllable devices consist of C thermostatically-controlled load (TCL) cooling devices (or
HVACs). The states and inputs of each device d are constrained by the feasible sets X d

k and Ud
k at

each time-step k, respectively. The total active power output at the point of interconnection with
the rest of the grid at time-step k is denoted by yk. In designing a controller for this system, the
dual objectives are:

a) to track the reference total active power output yref,k and

b) to minimize the user dissatisfaction with each device’s operation.

In this section, we will describe the model of the TCL devices employed and the overall
network model.

43

44 4.1. System Model

4.1.1 Thermostatically-Controlled Load

Thermostatically-controlled loads are devices for which the setpoints equate to temperatures (e.g.
fridges, freezers, air-conditioners, hot-water tanks, heat pumps, and swimming pool pumps). In
this section, we will describe their associated states, control inputs, disturbances and parameters
for the purposes of implementation in a building network.

States

The states of TCL d at each time-step k consist of the zone temperature, T d
k .

xd
k := [T d

k [�C]] 8 k = 0, 1, . . . , N (4.1a)

X d
k := [T 0d

k, T
0
d
k] 8 k = 0, 1, . . . , N (4.1b)

X d
f := [T 0d

N , T 0
d
N] (4.1c)

where:

T 0
d
k := min

⇣
max

�
X

d[T d
k]
�
, T

d
k

⌘
is the time-varying maximum allowed zone temperature

T
0d
k := max

⇣
min

�
X

d[T d
k]
�
, T

d
k

⌘
is the time-varying minimum allowed zone temperature

Note that we constrain the zone temperature to be the intersection of the nominal
feasible sets (given by the upper and lower bounds, T d

k and T
d
k) and the zone temperature in the

available training data X
d[T d

k] in order to steer the system trajectory to regions which are explored
(at least for some dimensions) by the GPs.

Control Inputs

The control inputs of the TCL at each time-step consist of the total cooling power produced, P d
k .

Note that this will always be nonpositive, as the TCL consumes power to cool its zone.

ud
k := [P d

k [kW]] 8 k = 0, 1, . . . , N � 1 (4.2a)

Ud
k := [�P 0

d
k,�P 0d

k] 8 k = 0, 1, . . . , N � 1 (4.2b)

where:

P 0
d
k := min

⇣
max

�
X

d[P d
k]
�
, P

d
k

⌘
is the time-varying maximum allowed power consumed

P
0d
k := max

⇣
min

�
X

d[P d
k]
�
, P

d
k

⌘
is the time-varying minimum allowed power consumed

Similar to the zone temperature, we constrain the cooling power to be in the intersection
of the nominal feasible sets (given by the upper and lower bounds, �P d

k and �P d
k) and the cooling

power in the available training data X
d[P d

k].
The closed-form expressions for this quantity are given by 4.3.

P
d
fan,k = 0.0076

�
ṁ

total
k

�3
+ 4.8865, ṁtotal

k =
DX

d=1

ṁ
d
k (4.3a)

P
d
ch,k =

(
ṁ

total
k (T d

o,k � T
d
da,k) if To,k > T

d
da,k

0 otherwise
(4.3b)

P
d
k = �(P d

fan,k + P
d
ch,k) (4.3c)

Chapter 4. Application to Real-Time Optimization of Energy Systems 45

where:

P
d
fan is the power consumed by the fan

P
d
ch is the power consumed by the chiller

ṁ
d
a is mass flow air

ṁ
total
a is total mass flow air over all TCLs

T
d
da is the discharge air temperature

To is the outdoor air temperature

Q
d
s is the solar irradiance

Q
d
i is the internal irradiance

Disturbances

The disturbances of the system consist of the temperature outside of the building at each time-step,
To,k. Note that this disturbance is common to all TCL devices in the network.

wd
k := [To,k [

�
C]] 8 k = 0, 1, . . . , N � 1 (4.4)

Dynamic State Equation

The discrete dynamic state equation of the TCL is assumed to be unknown. Instead of considering
available analytical models, we will learn the relationship between the current zone temperature,
cooling power input, outdoor temperature and the zone temperature in the subsequent time-step
using GPs trained with real data [52]. This approach can be advantageous because both the model
and the parameterization used in analytical models may be system- or time-dependent. By relying
on a model learned online, we can learn to control the system in question in real-time, without the
error introduced by the synthetic model. The prior state in this case is set to zero, and we use the
GP to learn the entire next state, see 4.5.

T
d
k+1 := ḡ(T d

k , P
d
k , To,k)| {z }

GP posterior mean of next state

(4.5)

The true system must also be modeled, such that once each MPC run terminates, the
resulting control input can be applied to the real system and the true next state obtained. In
our case, we do not have access to the real building system, and thus we model the true system
with a GP which uses several days of training data and has a prior mean equal to its reference
temperature (which we choose to approximately equal the mean of the training data). The result
is a GP-modeled true system which is computationally burdensome but precise enough for our
purposes. This provides a safe system output in the case that the GP inputs are in an unexplored
region.

46 4.1. System Model

Device Stage Cost Function

The time-varying stage cost function of the TCL user is also unknown. We synthesize noisy samples
from a given function and approximate this function with a GP. We take the stage cost prior to
be 0 (i.e. we have no full knowledge of particular terms in the function) and thus learn the entire
relationship with the GP, see 4.6.

l
d(T d

k , P
d
k , To) := j̄(T d

k , P
d
k , To,k)| {z }

GP posterior mean of stage cost

(4.6)

The true stage cost function is based on the squared difference between the temperature
and the temperature reference at each time step k, see 4.7.

l
true,d(T d

k , P
d
k , To) = (T d

k � T
d
k,ref)

2

| {z }
true stage cost

(4.7)

Parameters

The parameters provided to the TCL consist of the temperature reference T
d
ref,k, the nominal max-

imum zone temperature T
d
k, the nominal minimum zone temperature T

d
k, the nominal maximum

cooling power used P
d
k and the nominal minimum cooling power used P

d
k at time-step k, see 4.8.

pk :=

2

666664

T
d
ref,k

T
d
k

T
d
k

P
d
k

P
d
k

3

777775
(4.8)

4.1.2 Network

States

The network states include the n
d
x measurable states xd

k of each device d at each time-step k e.g.
state-of-charge (SOC) in the case of an energy storage system (ESS) (not implemented in this
work) or zone temperature in the case of a HVAC for all devices and time-steps. Each device’s
state vector has an associated feasible set X d

k . The states and corresponding feasible sets of all
devices (4.9a) are combined into aggregate state vectors for each time-step k (4.9b). The states
and corresponding feasible sets of all time-steps are combined into a single aggregate state vector
and feasible set (4.9c), generating a single vector of states which can be used in an optimization
algorithm.

xd
k 2 X d

k ✓ Rnd
x (4.9a)

xk =

2

64
x1
k
...

xD
k

3

75 2 Xk := X 1
k ⇥ · · ·⇥⇥XD

k ✓ R
PD

d=1 nd
x (4.9b)

x =

2

64
x1
...

xN

3

75 2 X := X1 ⇥ · · ·⇥ XN ✓ RN
PD

d=1 nd
x (4.9c)

Chapter 4. Application to Real-Time Optimization of Energy Systems 47

Control Inputs

Control inputs include the active power output setpoints dispatched to each device d at each time-
step k (4.10a). These control input vectors and their associated feasible sets are aggregated into a
control input vector and feasible set for each time-step (4.10b), which are in turn aggregated into
a single vector and feasible set over all time-steps (4.10c), which can be used in an optimization
algorithm.

ud
k 2 Ud

k ✓ Rnd
u (4.10a)

uk =

2

6664

u1
k

u2
k
...

uD
k

3

7775
2 Uk := U1

k ⇥ U2
k ⇥ · · ·⇥ UD

k ✓ R
PD

d=1 nd
u (4.10b)

u =

2

6664

u0

u1
...

uN�1

3

7775
2 U := U0 ⇥ U1 ⇥ · · ·⇥ UN�1 ✓ RN

PD
d=1 nd

u (4.10c)

If commands are dispatched to device d at a slower rate of every i + j time-steps for
j > 0, the most recently issued command ud

i is held constant until the next command ud
i+j is

received. In this case Ud
k , k = i+ 1, . . . , j � 1 would be a singleton set while the command is held

constant.

Disturbances

The disturbances of the system consist of the power outputs for each of the uncontrolled loads d

in the building network at each time-step k, wd
k. These disturbances are aggregated into a vector

corresponding to each time-step (4.11) and subsequently into a single vector of disturbances (4.12)
which can be passed as a parameter to an optimization algorithm.

wk =

2

6664

w1
k

w2
k
...

wW
k

3

7775
(4.11)

w =

2

6664

w0

w1
...

wN�1

3

7775
✓ RN

PW
d=1 nd

w (4.12)

Outputs

The controlled setpoints uk and the uncontrolled power outputs wk are mapped to the measured
net real electrical power produced by the network at time-step k, yk 2 R, by the function yk :
RD ⇥RW 7! R (4.13) which takes the controlled setpoints as an input and the uncontrolled power
outputs as a parameter.

yk(uk;wk) := 11⇥Duk + 11⇥Wwk (4.13)

The coupling metric 4.13 is representative of the case in which we assume all devices
are connected to a common electrical node e.g. a building or collection of buildings with a common
distribution feeder.

48 4.2. MPC Optimal Control Problem

GP-Modeled Functions

There are a number of unknown functions in our system which must be learned concurrently with
the execution of the controller using GPs:

• The (possibly nonlinear, non-convex) user dissatisfaction stage cost function of each device
d, l

d may be unknown, outdated or deviate greatly from approximated synthetic models.
We will model these functions with GPs and use their posterior means l̄

d and closed-form
expressions for the derivatives of the posterior means �l̄

d given feedback collected from the
device users in lieu of closed-form expressions.

• The (possibly nonlinear, non-convex) dynamics of each state i of each device d, f
d
i may

be unknown. We will model these functions with GPs and use their posterior means f̄
d
i

and closed-form expressions for the derivatives of the posterior means �f̄
d
i given feedback

collected from the true device system, in lieu of closed-form expressions.

Additionally, it may not be possible to collect reliable power output measurements
from the uncontrollable loads wk and it may therefore be impossible to directly calculate the total
active power yk or to compute its gradient at each time-step k. In the case that a single iteration
is allowed for the algorithm to converge at each time-step, we could use the measurement of the
active power at the point of interconnection ŷk in lieu of the deterministic expression given by 4.13
and employ the measurements to approximate the gradient by the finite-difference method 2.25.

Network Performance Stage Cost Function

The objective of this case-study is to formulate a demand-side management problem (similar to
[13, 14]) which allows real-time scheduling of end-user devices by minimizing a cost function that
considers both user satisfaction and network performance over a horizon of time-steps projected
into the future.

The MPC cost function accordingly includes terms represented by unknown dissatis-
faction functions l

d(zdk) corresponding to the user(s) of each device d. For example, in the case of
TCLs the discomfort function may model the discomfort of the user for deviations from a preferred
temperature setpoint, or in the case of ESSs the discomfort function may model the dissatisfaction
of the user for deviations from a preferred charging profile. In this work, these discomfort functions
are unknown a priori and are subsequently learned from user feedback using GPs.

The cost function also includes a known time-varying performance or engineering cost
which couples the states and setpoints of all devices, l0k(yk). In our case this is based on the squared
difference between the net power output of the system and a preferred power output profile, see
4.14.

l
0
k(yk) :=

�

2
kyk � yref,kk22 (4.14)

The overall network model is illustrated in Fig. 4.1. In theory, the framework presented
in this chapter could include a number of ESSs, for example electric vehicle (EV) batteries con-
nected to the building power network. While multiple models and datasets of batteries were tested
and analyzed, a source of high-granularity data suitable for GP-modeling could not be obtained.
The EV batteries are included in the illustration to demonstrate how a network of power-consuming
(TCLs) and sometimes power-producing (EV batteries) devices could be interconnected in a control
system which tracks a net power output.

4.2 MPC Optimal Control Problem
Model Predictive Control is a well-established method for real-time control of a network of dis-
tributed energy systems, as shown in [9]. In order to control the states of each device in the

Chapter 4. Application to Real-Time Optimization of Energy Systems 49

Figure 4.1: A Network of D Controllable Devices and W Uncontrollable Devices, where ud
k rep-

resents a control input signal distributed from the centralized operator to device d at time-step
k and subsequently output in the form of power to a common interconnection, xd

k represents the
state vector of device d at time-step k and wd

k represents the power output from uncontrollable
device d at time-step k.

network given constraints coupling the states and inputs of multiple devices, a cost coupling the
states and inputs of multiple device, feasible sets for the states and control inputs of each device
and user dissatisfaction costs for each device we can formulate a multiuser MPC optimization
control problem.

As described in Sec. 4.1.2, we have a networked system consisting of a finite set of D
controllable devices with corresponding users and W uncontrollable devices. The states xd

k and
control inputs ud

k of each controllable device d at each time-step k are constrained by the time-
varying feasible sets X d

k and Ud
k , respectively. The horizon cost function L({zk}Nk=0) captures both

the separable device cost functions l
d(zdk) for the controllable devices that depend only on that

device’s decision variables, and a system cost function l
0(yk) which couples the cost of the individual

controllable devices’ decision variables. We combine the state feasible sets X d
k and the control input

feasible sets Ud
k into the time-varying decision variable feasible set Zd

k . For computational purposes,
we reformulate the dynamic state equations as equality constraints F d

k,i(z
d
k) = x

d
k+1,i� f̄

d
i (z

d
k) = 0.

The multiuser discrete-time MPC with GPs can thus be formulated as in 4.15.

50 4.2. MPC Optimal Control Problem

min
{zk}

N
k=0

L
�
{zk}Nk=0

�
:=

NX

k=0

2

64
DX

d=1

l
d
(zk)| {z }

unknown stage user cost

3

75+ l
0
k(yk)| {z }

known stage system cost

(4.15a)

s.t. xd
0 = xd(t) for d = 1, . . . , D (4.15b)

F
d
k,i(z

d
k) = 0 for d = 1, . . . , D; k = 0, . . . , N � 1; i = 1, . . . , nd

x (4.15c)

zdk 2 Zd
k for d = 1, . . . , D; k = 0, . . . , N � 1 (4.15d)

xd
N 2 X d

f for d = 1, . . . , D (4.15e)

g
d
k,j(x

d
k)  0 for d = 1, . . . , D; k = 0, . . . , N ; j = 1, . . . , nd

g (4.15f)
g
0
k,j(yk)  0 for k = 0, . . . , N ; j = 1, . . . , n0

g (4.15g)

where:

n
d
x is the number of state variables associated with device d

n
d
u is the number of control input variables associated with device d

n
d
w is the number of disturbance variables associated with device d

n
d = n

d
x + n

d
u + n

d
w is the number of decision variables associated with device d

nx :=
PD

d=1 n
d
x is the number of state variables associated with all devices

nu :=
PD

d=1 n
d
u is the number of control input variables associated with all devices

nw :=
PD

d=1 n
d
w is the number of disturbance variables associated with all devices

n := nx + nu is the number of decision variables for all devices at each time-step

n
d
g is the number of inequality constraints associated with device d at each time-step

n
0
g is the number of coupling inequality constraints associated with the network at each time-step

l
0
k(yk) : R 7! R := �

2 kyk � yref,kk22 is a time-varying smooth and convex function specifying costs
associated with the system (net power) output yk at each time-step k

yref,k 2 R is a time-varying reference signal for the active power at the point of interconnection

l̄
d(zdk) : Rnd 7! R is the posterior mean of an unknown, GP-approximated function specifying

costs incurred on user d at each time-step k

xd(t) is the true initial state measured from the true device d

zdk 2 Rnd
:= [xd

k
T
ud
k
T
]T is the vector of device d states and inputs. It is the d

th sub-vector of zk.

F
d
k,i(z

d
k) : Rnd 7! R := x

d
k+1,i � f̄

d
i (z

d
k) = 0 is a function imposing the dynamic state equality

constraint on the decision variables of state i device d at time-step k

g
d
k,j(x

d
k) : Rnd

x 7! R is a function imposing time-varying constraints on device d at time-step k

where we assume that g
d
k,j(yk) is nonlinear and convex for j = 1, . . . , nd

g,n, whereas g
d
k,j(yk)

is linear or affine for j = n
d
g,n + 1, . . . , nd

g

g
0
k,j(yk) : R 7! R is a function imposing time-varying constraints on the system output yk at time-

step k where we assume that g
0
k,j(yk) is nonlinear and convex for j = 1, . . . , n0

g,n , whereas
g
0
k,j(yk) is linear or affine for j = n

0
g,n + 1, . . . , n0

g

Chapter 4. Application to Real-Time Optimization of Energy Systems 51

X d
k ✓ Rnd

x is the feasible set for the states of device d at time-step k

X d
f ✓ Rnd

x is the terminal feasible set for the states of device d

Xk := X 1
k ⇥ · · ·⇥ XD

k is the feasible set for the states of all devices at time-step k

Xf := X 1
f ⇥ · · ·⇥ XD

f is the terminal feasible set for the states of all devices

Ud
k ✓ Rnd

u is the feasible set for the control inputs of device d at time-step k

Uk := U1
k ⇥ · · ·⇥ UD

k is the feasible set for the control inputs of all devices at time-step k

Zk := Xk ⇥ Uk is the feasible set for all decision variables at time-step k

Z := Z0 ⇥ · · ·⇥ ZN is the feasible set for all decision variables and all time-steps

For the purposes of implementation with a gradient-based algorithm, we aggregate the variables
and constraints over all devices and time-steps into single sets:

zk 2 Rn := [z1k
T
. . . zDk

T
]T is the vector of optimization variables at time-step k

z 2 RNn := [z1T . . . zNT]T is the vector of optimization variables over all time-steps

Fk(zk) := [F 1
k,1(z

1
k), . . . , F

1
k,nd

x
(z1k), . . . , F

D
k,1(z

D
k), . . . , FD

k,nD
x
(zDk)]T is the set of dynamic state

equality constraints at time-step k

F (z) := [F0(z0)T , . . . , FN�1(zN�1)T]T is the set of dynamic state equality constraints over all
time-steps

µ 2 RNnx is the vector of equality dual variables associated with all constraints/rows in F

G(z) :=
⇥
g
0
0(y0)T , . . . , g0N (yN)T , g10(x

1
0)

T
, . . . , g

1
N (x1

N)T , . . . , gD0 (xD
0)T , . . . , gDN (xD

N)T ,
⇤T is the set

of explicit output and state constraints over all time-steps

� 2 RN(n0
g+ng) is the vector of inequality dual variables associated with all constraints/rows in G

L(z) :=
PN

k=1

PD
d=1 l̄

d(zdk) + l̄
0(yk) is the total horizon cost function

Of particular importance above, are the optimization variables, z, the inequality con-
straints, G(z), the equality constraints, F (z), the feasible set, Z of the problem and the cost function
L(z).

The optimal solution z? is then the trajectory which minimizes the cost function L(z)
of the system over the next N time-steps by varying the optimization variables z within the implicit
and explicit constraints given by Z, F (z) and G(z).

4.3 Results of GP Predictions

In this section, we provide relevant parameterization, results and plots of the GP training data,
the GP predictions (the posterior mean of the GP at the test inputs), the GP prediction error
(±1� 3 times the standard deviation of the prediction) and scores of the unknown dynamic state
and stage cost functions which are modeled by GPs.

52 4.3. Results of GP Predictions

4.3.1 TCL State Variation

In this section, we use the training data from a single TCL device to test the GP model. We
omit the superscripts d and i for brevity, as we are considering only a single device and a single
state. In order to evaluate the GP score, true values of the outputs are required. We therefore
take a window of available data and alternate a given number of training points with a given
number of test points, at the fixed ratio Ntr : N⇤. There are three input variables to consider
(the zone temperature Tk, the cooling power Pk and the outdoor temperature To,k) and a single
output variable (the subsequent zone temperature Tk+1). Given that this is too many variables to
represent on a two- or three-dimensional plot, we plot the state variation against time to visualize
the relationship.

Table 4.1 gives the optimized hyperparameters used (see Sec. 2.5) and the scores
calculated (defined in 2.24) and Fig. 4.2 shows the score of the GP model for increasing numbers
of training values. Note how the score saturates to a near maximum value of 0.9999 with only 95
training samples. Thereafter, the score varies between a maximum value of 1 and 0.9999 due to
numerical rounding errors.

Ntr N⇤ lg �
2
g �

2
n,g Score

47

48 [1.962, 7.729, 7.001] 15.631 3.8351 ⇤ 10�4

0.9995
95 0.9999
143 1.0
191 1.0
239 0.9999
287 1.0

Table 4.1: State GP Predictions for Tk+1 = g(Tk, Pk, To,k), where predictions are made at inter-
mittent points extracted in the training data region.

Figure 4.2: State GP Prediction Score vs. No. Training Samples for Tk+1 = g(Tk, Pk, To,k), where
predictions are made at intermittent points extracted in the training data region.

Fig. 4.3 compares the training data taken at regular intervals from the real dataset
and the GP predictions at the test data points taken at alternating intervals from the real dataset.
We see that for any of the training sets tested, the GP can capture all significant variations seen

Chapter 4. Application to Real-Time Optimization of Energy Systems 53

in the training data, given that it is tested at data points that are close in Euclidean space to the
training data.

In contrast, Table 4.2, Fig. 4.5 and Fig. 4.4 give the GP parameterization, scores and
predictions, where the training data is taken from a continuous subset of the real dataset and the
GP predictions are made over a single hour (12 samples for a sampling time of 5 minutes) of test
data points taken from a continuous subset of the real dataset subsequent to the training data. In
this case, where the GP is trained and tested over different input regions, we see that the results
for 47 � 95 training samples are not sufficient to model the true function. By 143 samples, there
is sufficient variation along the range of the training data such that the true function is at least
captured by the predicted standard deviation, and by 287 samples major variations in the function
are captured quite well by the posterior mean of the prediction. Note how, in the scores given in
Table 4.2 and Fig. 4.4, the score does not increase monotonically with the training data. This is
because we are training over different input regions for each case, and testing over different regions
too. While we cannot fairly compare the different predictions in this case, we can observe how
well the GP can predict over a future time horizon (highly relevant considering that it is to be
integrated into a MPC receding horizon scheme) given a sliding-window of training data collected
and stored online.

Ntr N⇤ lg �
2
g �

2
n,g Score

47

48 [1.962, 7.729, 7.001] 15.631 3.8351 ⇤ 10�4

0.9895
95 0.2279
143 0.9997
191 0.9991
239 0.9999
287 0.927

Table 4.2: State GP Predictions for Tk+1 = g(Tk, Pk, To,k), where predictions are made for the
hour following the training data.

4.3.2 TCL Stage Cost

The stage cost of the TCL is synthesized as the squared difference between the current zone
temperature and a preferred zone temperature. As we use synthesized data, we can test the GP
independently for each input feature, i.e. generate a training set where only one variable is nonzero,
and then test with data points where only the same variable is nonzero. For this particular case,
it is not necessary, as the true stage cost is only a function of one variable anyway, but it proves
a useful testing approach in the case of multivariate functions e.g. in the case of the inverted
pendulum in Appendix A.

Table 4.3 gives the manually-set hyperparameters and the scores for different numbers
of training samples. In the case of a quadratic function, it is trivial to set the hyperparameters
by inspection - the length scale corresponding to a variable upon which the quadratic function
is dependent is the domain of that variable and the length scale of any other variable is set
to an arbitrarily small value, i.e. we are implementing Automatic Relevance Determination by
giving irrelevant dimensions small length scales, such that the covariance associated with these
dimensions is negligible. Fig. 4.6 shows the score of the stage cost GP model and Fig. 4.7 shows
the training data and the resulting GP predictions of the stage cost function for different numbers
of training samples. As we can see, a near perfect quadratic relationship is modeled with only 5
training samples. This exemplifies how optimized hyperparameters result in a GP that becomes
incrementally more accurate with an increasing number of training points. The alternative scenario,
which can occur for a poorly parameterized covariance kernel, is that the GP attempts to overfit
the training data given more samples, resulting in higher frequency variation in the prediction than
is necessary to model the true function.

54 4.4. Results of MPC Simulations

Ntr N⇤ Tk,ref lj �
2
j �

2
n,j Score

5

50 24 [8.0, 10�6, 10�6] 50.0 10�6

1.0
10 1.0
25 1.0
50 1.0

Table 4.3: Stage Cost GP Predictions for l
TCL = j(Tk, Pk, To,k).

4.4 Results of MPC Simulations
A network of 5 TCL devices are simulated over 288 time-steps of 5 minute duration (equivalent
to a single day). Refer to Sec. 4.2 for a description of the variables plotted. The TCL, GP and
Network parameters are given in Tables 4.4, 4.5 and 4.6, respectively. Note that by formulating
the upper and lower bounds of the optimization variables as in Table 4.4, we manually set bounds
which are displaced by the upper and lower bounds of the corresponding dimension in the training
data if necessary (see the last paragraph of Sec. 2.14 for the reasoning behind this).

T
d
k T

d
k P

d
k T

d
ref,k

max

0

BBBB@

2

66664

22
21.5
22.5
21
23

3

77775
,min(Xd[T d])

1

CCCCA
min

0

BBBB@

2

66664

28
28.5
28
28.5
27.5

3

77775
,max(Xd[T d])

1

CCCCA
max(48,min(Xd[P d]))

2

66664

24
23.5
24.5
23.5
24.5

3

77775

Table 4.4: TCL Parameters

Dynamic State/Stage Cost Function Ntr,0 Ntr �t
d
x / �t

d
l [s]

Dynamic State 287 (1 day) 431 (1.5 days) 60 (5 minutes)
Stage Cost 25 50 3600 (1 hour)

Table 4.5: GP Parameters

Fig. 4.8 shows the convergence of the iterates for the first simulation time-step k0 = 0,
where Fig. 4.8a shows the trajectory of each primal variable (top plot), each dual variable (middle
plot) and the horizon cost function (bottom plot) and Fig. 4.8b shows the L2-norm change in
the primal (top plot) and dual (bottom plot) variables, the values of which determine when the
gradient algorithm stops converging (more specifically, when the value of the L2-norm of the KKT
point, or the combined primal and dual variables, falls below a given threshold). Although the
maximum allowed number of iterations in this case is set to 2000, we see that there is negligible
variation in the iterates within 80 iterations. This is in part due to the fact that the bounds on
the states and inputs are expressed by convex and compact feasible sets as opposed to explicit
inequality constraints, and so they have no associated inequality dual variables � to converge.
The fast convergence is also promoted by the constant temperature reference i.e. tracking of a
constant reference (except when the power reference changes) results in states that don’t need to
vary drastically from one time-step to the next. The primal variables z, and thus the cost function
L(z) which depends on them, converge directly to their local optima. While there is some overshoot
in the dual equality variables µ, they too quickly settle to their local optima.

Fig. 4.9 shows the trajectory of the ‘true’ states x0 (recall that we use a highly-trained
GP with a prior mean set to the reference temperature as the true system), optimized control
inputs u0, horizon cost L(z) and equality constraint violation F (z) over a simulation period of 288

Chapter 4. Application to Real-Time Optimization of Energy Systems 55

D W � yref,k

5 0 0.02 Alternating between �32 and �24 every 72 time-steps

Table 4.6: Network Parameters

Batch/Real-Time �t ⌫ T ↵ ⌘ ✏ MaxIter N

Batch

300 (5 minutes) 10�4 288 0.075 1 1

2000 6
Real-Time 100 3
Real-Time 100 6
Real-Time 100 12
Real-Time 1 6
Real-Time 5 6
Real-Time 10 6
Real-Time 25 6
Real-Time 50 6

Table 4.7: MPC Simulation Parameters

5-minute time-steps (see Sec. 4.2 for a full description of the variables). Note from Table 4.6 that
the reference value for the net power output yref,k changes every 72 time-steps, and we can see
this variation in the horizon cost and in the optimized control inputs. It is evident that one TCL
device in particular, that associated with x0,3, u0,3 and F3, is perhaps not modeled as well by its
corresponding GP as the other devices. This may be because the trajectory of the simulations is
diverging from its explored region of input data and that it requires additional exploratory pre-
training before being integrated into the control scheme, or more granular online training. Other
features to note are the occasional oscillations in the state trajectories. This is likely because we
are using a highly-training GP as the ‘true’ system in our simulations, and so sometimes a cyclical
variation in state can occur when an optimal input generated from the MPC using the ‘weakly-
trained’ GPs is passed to an equivalent ‘highly-trained’ GP to fetch the true next state, which is
subsequently fed back to the ‘weakly-trained’ GPs in the next MPC run.

Fig. 4.10 shows the simulation trajectories for a fixed maximum number of iterations
MaxIter and different horizon lengths N . Note that the horizon cost will differ for different
horizon lengths, as an additional stage cost is included for each increment to the horizon length.
Very similar trajectories are pursued for different horizon lengths, suggesting that, given enough
iterations, extending the horizon length does not seems to produce superior performance, nor
contribute to instability.

Fig. 4.11 shows the simulation trajectories for a fixed horizon length, N , and different
maximum allowed number of iterations, MaxIter. Again, the controllers pursue similar trajectories
for different values of MaxIter, suggesting that the real-time performance of the MPC does not
appear to improve for marginally greater numbers of iterations, i.e. the iterates converge quite
quickly to close-to-optimal values and so do not require additional permitted iterations.

56 4.4. Results of MPC Simulations

(a) 47 Training Samples (b) 95 Training Samples

(c) 143 Training Samples (d) 191 Training Samples

(e) 239 Training Samples (f) 287 Training Samples

Figure 4.3: GP Predicted Output vs. Time for Tk+1 = g(Tk, Pk, To,k). The upper plots show
the training data used, whereas the lower plots show the test points (pulled from the real data at
alternating indices) at which the predictions are made.

Chapter 4. Application to Real-Time Optimization of Energy Systems 57

Figure 4.4: State GP Prediction Score vs. No. Training Samples for Tk+1 = g(Tk, Pk, To,k), where
predictions are made for the hour following the training data.

58 4.4. Results of MPC Simulations

(a) 47 Training Samples (b) 95 Training Samples

(c) 143 Training Samples (d) 191 Training Samples

(e) 239 Training Samples (f) 287 Training Samples

Figure 4.5: GP Predicted Output vs. Time for Tk+1 = g(Tk, Pk, To,k). The upper plots show the
training data used, whereas the lower plots show the test points (pulled from 1 hour of the real
data after the selected training data) at which the predictions are made.

Chapter 4. Application to Real-Time Optimization of Energy Systems 59

Figure 4.6: Stage Cost GP Prediction Score vs. No. Training Samples for l
TCL = j(Tk, Pk, To,k)

(Note that in the scale along the y-axis, 10.0 corresponds to 1)

60 4.4. Results of MPC Simulations

(a) 5 Training Samples (b) 10 Training Samples

(c) 25 Training Samples (d) 50 Training Samples

Figure 4.7: Stage Cost GP Predicted Output vs. Input Feature Tzone for lk = j(Tk, Pk, To,k).

Chapter 4. Application to Real-Time Optimization of Energy Systems 61

(a) Variable (b) Variable Norm Variation

Figure 4.8: Batch Convergence for k0 = 0, N = 6, MaxIter = 2000

Figure 4.9: Batch MPC with GP Simulation Trajectories for N = 6, MaxIter = 2000

62 4.4. Results of MPC Simulations

(a) N = 3 (b) N = 6

(c) N = 12

Figure 4.10: Real-Time Simulations for Different Horizon Lengths, MaxIter = 100

Chapter 4. Application to Real-Time Optimization of Energy Systems 63

(a) MaxIter = 1 (b) MaxIter = 5

(c) MaxIter = 10 (d) MaxIter = 25

(e) MaxIter = 50

Figure 4.11: Real-Time MPC with GP Simulation Trajectories for Different MaxIter, N = 6

64 4.4. Results of MPC Simulations

Chapter 5

Conclusions

In this chapter, we will reflect upon the results of this work and their contribution to the challenges
outlined in Chapter 1.

5.1 Gaussian Process-Learned Functions
Modeling nonlinear black-box functions with Gaussian Process regression has both benefits and
limitations. Although GPs are in the category of nonparametric modeling approaches, the structure
of the covariance kernel must be selected and the hyperparameters of these kernels must be chosen
appropriately. The squared exponential covariance kernel is a reliable choice for smooth functions
and is well-established in GP applications in literature, and the hyperparameters can be optimized
over by maximizing the marginal log likelihood. For particular function classes (e.g. functions with
quadratic and sinusoidal terms, or functions with a predictable frequency of fluctuations along each
dimension of its input vector), very few training samples are necessary to model the function to a
high degree of accuracy. The low number of samples required is of particular relevance when we
consider systems which are expensive or burdensome to test extensively. Human users, for example,
do not generally wish to be queried for feedback 2000 times at 1 second intervals. The second
advantage of a low sampling rate applies to the real-time setting of the MPC scheme proposed. If
the MPC relies on new information regarding the system to best optimize for a control input that
is required at short, regular intervals, we cannot afford to invert a large covariance matrix each
time new training data is received. The computational burden of using a GP-learned function can
be minimized with adaptive sampling, by employing a low sampling rate, by implementing more
efficient matrix inversion techniques and by using a small but relevant training set (i.e. considering
only relevant states, inputs and/or disturbances). It should also be noted that the target of the
GP can be more precisely specified if it is used exclusively for the unknown nonlinear terms of the
function. This can be achieved with the use of a prior function that equates to the known terms
of the function or to an established synthetic model. The additional advantage of this approach, is
that if the GP is tested in a relatively unexplored region where the posterior mean may be close to
0, the value returned could depend on the synthetic model or known linear terms instead of solely
on the GP prediction.

If the GP model is tested for inputs which deviate greatly from the available training
data (as measured by the degree of covariance between the test inputs and the training inputs),
then it is likely to return its mean prior (usually 0) with a high predicted standard deviation. High-
values of the standard deviation can thus be considered as a warning signal that the GP is not
reliable. In this work, the individual states and inputs of the system are constrained by the bounds
of the available training data. This can be achieved by setting either dynamic bounds on the states
and inputs of the system, or a dynamic terminal set which constrains the system to remain in the
safely predictable region of the GP. Another approach would be to use a hybrid system function
in which a synthetic model is used when states and inputs stray outside the training dataset and
a GP model is used otherwise. A less conservative approach would be to improve the reliability of

65

66 5.2. MPC Schemes with GP-Learned Functions

the GP in real-time by executing exploratory testing of the system within the MPC to learn the
unknown regions of the function. This could be achieved by incorporating the standard deviation
of the predictions into the stage cost function [15] and thereby allowing the states or inputs to
occasionally stray outside the safe region for the purposes of fetching useful system observations.

In order to maintain an up-to-date model of the system with a minimal number of
training samples, in this work a sliding-window subset of online training data with a capped length
is sampled as the control scheme is run. While this requires that the training data covariance
matrix be inverted and that the hyperparameters be re-optimized more frequently, it ensures that
the GP model reflects current likely disturbance values well and becomes more familiar with the
current input region as it moves towards and through it. Alternatively, a running score could be
calculated for the GP based on the deviation between the true and predicted system outputs, and
a new set of training data collected only if the score has fallen below a given threshold.

It was noted in the inverted pendulum experiment in Chapter A that care should be
taken when using a GP to estimate the rate of change of a system, as the difference between
a positive and negative rate-of-change may have a significant effect on the sign of the optimal
control input. This issue arose in the case of the inverted pendulum system as the rate-of-change
approached 0, but the GP may have modeled a different sign from the true function, and so the
optimized control input could accelerate the pendulum in the wrong direction. A solution to this
problem was found by dynamically updating the online subset of the training data, such that as
the trajectory approached this cross-over point, the online subset contained high-granularity data
in the neighborhood of this cross-over region. While this worked well for the batch approach, it
was not sufficient to stabilize the system in the online approach.

5.2 MPC Schemes with GP-Learned Functions

GP-learned functions are highly applicable to time-varying problems, in which the cost function
and/or dynamic state function rely on multiple variables, and the synthetic model cannot capture
the finer dependencies on both system and/or environmental variables. Furthermore, as the system
evolves over time, GPs can capture these changes by updating their training sets. GP-models are
particularly conducive to modeling systems with a low and/or heterogeneous feedback sampling
rate i.e. they can generate a sufficiently accurate model with very few dissimilar, noisy training
points. The human-in-the-loop scenario, in which feedback on human preferences is required to
learn about their needs, is an excellent example of this, as we cannot expect users to provide
consistent and frequent feedback. The network of TCLs in a building is another good example
of these ‘low feedback rate’ systems, in which case it is costly to take the building offline for the
purposes of performing regular, thorough testing, but feedback can be collected during normal
operation in an online fashion.

A challenge presented by the MPC with GPs scheme presented in this work is the
parameterization required. While the GPs corresponding to individual devices and users can
be optimized over using the maximum marginal log likelihood method described in Sec. 2.5, it
is less straightforward to optimize over the parameters of the regularized primal-dual gradient
algorithm ↵, ⌘ and ✏. We found that if a set of step-sizes performs well for the batch case, then
it can be expected to work for the online implementation. The same cannot be said, however, for
MPC using the true functions compared to using the GP-learned models (tested in the inverted
pendulum experiments in Appendix A). In this case, the step-sizes usually have to be adapted in
response to the different Lipschitz constants of the true vs. GP-modeled functions. It was noted
that, in general, it is safer to underestimate step-sizes than to overestimate, or to reduce them
as the problem converges. Additionally, if the convergence trajectories of specific primal or dual
variables are proving to be problematic, it is advisable to fine-tune the step-size associated with
those particular variables.

Chapter 5. Conclusions 67

5.3 Recommendations for Further Work
There are a number of modifications which could be integrated into the learning-based MPC
methodology proposed and tested in this work as well as potential for further investigation into
safety and/or performance guarantees for such a control scheme. In this section, we summarize
some areas of high potential for research that could build on the developed framework and findings
of this work:

• The real-time control scheme presented in this work could further be adapted to a distributed
setting, where we consider the cost of time delays in transmitting information between devices
and a central controller by leveraging the decomposability of the regularized Lagrangian
function 3.20.

• A zeroth-order scheme could be integrated into the real-time MPC framework which leverages
point-wise values of the cost function (known as partial-information feedback) rather than
directly computing the gradient (known as full-information feedback), as in [30], when closed-
from expressions for the derivative of the function are not available, e.g. when implementing
alternative nondifferentiable covariance kernels or employing hybrid synthetic-GP models.

• A terminal cost and ‘safe’ terminal set, such as the elliptical terminal set derived and im-
plemented in [23], could be integrated to ensure that the MPC trajectory steers the system
to a region which robustly satisfies constraints with a high probability, given the propagated
uncertainty of the GP predictions.

• A term maximizing the standard deviation of the GP predictions could be included in the
stage cost, i.e. the Upper-Confidence Bounds (GP-UCB) method implemented in [23], such
that the controller simultaneously explores unknown regions of the dynamic state GPs while
exploiting the optimizer of known regions.

• Auto-regressive inputs could be considered in the GP models. This could be particularly
applicable to the user dissatisfaction cost functions, where a user’s perceived dissatisfaction
is likely not only to depend on the current states, inputs and disturbances, but also on historic
ones.

• The building-control simulation could be augmented with uncontrolled loads, two-way loads
which can produce as well as consume power (e.g. EV batteries) and convex inequality
constraints limiting the power flow through individual feeder lines connecting the devices.

• In the inverted pendulum experiment in Chapter A, MPC simulations were compared for
true vs. GP-modeled functions. It would be beneficial to formally characterize the difference
in stability and performance for a control scheme based on true stage cost and dynamic state
functions vs. GP-modeled counterparts.

• The sparsity of the covariance matrix could be leveraged to more efficiently invert it for new
training data additions made online, as proposed in [17].

• Optimal Experiment Design (OED) techniques could be adapted for online learning, i.e. to
determine which of the incoming feedback samples to add to the training set, and which
existing samples to discard to free memory for them.

68 5.3. Recommendations for Further Work

Appendix A

Additional Application to an

Inverted Pendulum System

Chapter 4 illustrated the merits of the proposed methodology in the context of energy systems. In
this chapter, we provide an additional illustrative example in which the proposed MPC with GPs
algorithm is used to solve an inverted pendulum system (similar to the case study conducted in
[23]) in real-time. All Python code written for the experiments conducted in this chapter can be
found at [51].

A.1 System Model
In this section, we will describe the states, inputs, disturbances and parameters which characterize
the inverted pendulum system.

States

The states of the inverted pendulum system consist of the angle ✓ of the pendulum from the upright
position and the angular velocity ✓̇ of the pendulum’s rotation, see A.1.

xk :=


✓k [rad]
✓̇k [rad/s]

�
(A.1a)

Xk :=

(
x 2 R2 |


✓

✓̇

�
 x 

"
✓

✓̇

#)
8 k = 0, 1, N � 1 (A.1b)

Xf :=

(
x 2 R2 |


✓

✓̇

�
 x 

"
✓

✓̇

#)
(A.1c)

Control Inputs

The control inputs of the system consist of the applied torque ⌧
✓, see A.2.

uk =
⇥
⌧
✓
k [Nm]

⇤
8 k = 0, 1, . . . , N (A.2a)

U = {u 2 R | ⌧✓  u  ⌧✓} (A.2b)

Disturbances

The disturbances of the system consist of a disturbance torque ⌧
✓
w.

wk =
⇥
⌧
✓
w,k [Nm]

⇤
8 k = 0, 1, . . . , N � 1 (A.3a)

69

70 A.2. Results of GP Predictions

Dynamic State Equation

The true continuous-time dynamics of the system are given by Eqn. A.4.

ẋ := f(x,u;w) =


✓̇

g
l sin ✓ �

⌘
ml2 ✓̇ +

1
ml2 (⌧

✓ + ⌧
✓
w)

�
(A.4)

where:

m is the mass of the pendulum [kg]

l is the length of the pendulum [m]

⌘f is the friction parameter [Nms/rad]

g is the gravitational constant [m/s2]

This continuous set of equations is discretized with the Runge-Kutte fourth-order
method (see Appendix D.2.2). The derived difference equations are lengthy and are thus omitted.

Stage Cost

The true stage cost and terminal cost are given by A.5a and A.5b, respectively.

l(xk,uk) = ✓
2
k (A.5a)

lf (xN) = ✓
2
N (A.5b)

Parameters

The parameters of the system include the parameterization of the dynamic state function A.4 and
the upper and lower bounds of the angle ✓, the angular velocity ✓̇ and the applied torque ⌧

✓, see
A.6.

pk :=
h
m, g, l, ⌘, ✓k, ✓k, ✓̇k, ✓̇k, ⌧

✓
k, ⌧

✓
k

iT
(A.6)

A.2 Results of GP Predictions
In this section, we provide plots of the GP predictions for both the nonlinear dynamic state equation
and stage cost and scores of the GP models.

A.2.1 State Variation GP Predictions

In the case of the inverted pendulum system, we only model the dynamic equation of the second
state, ẋ2 = ✓̈ with a GP. The reason for this is that we know that the first state is a linear function
of the inputs, ẋ1 = x2, and so there is no need to employ a nonlinear nonparametric regression
technique to learn this. The continuous equations A.4 are first discretized using the Runge-Kutte
fourth-order method (see Appendix D.2.2), such that the discrete-time next state ✓̇k+1 can be
estimated with a GP. The only nonlinear component in the discretization of Eqn. A.4 is the sine
term, which is a function of ✓. We therefore only plot the GP model of ✓̇k+1 as a function of ✓.
Although linear terms can be very precisely approximated by GPs and are trivial to parameterize
(we can simply set the length scale to a number arbitrarily greater than the expected input domain),
there are many less computationally intensive parametric methods of approximating linear models
e.g. linear regression. While we do not do this for the plots shown for consistency with the first

Appendix A. Additional Application to an Inverted Pendulum System 71

experiment (see 4), if the linear terms of an unknown function are known, we can set the prior h

to equal these terms, such that they are subtracted from the training data and the GP does not
have to consider their influence.

Table A.1 shows the initial hyperparameters and scores for different numbers of training
samples. The hyperparameters are still found by maximizing the marginal log likelihood, but the
initial values can significantly influence the solution if there are multiple local optima. In this case
we know that the variation of the nonlinear sinusoidal term can be modeled with a length scale of
⇡ and the variation of the linear terms of the two remaining variables ✓̇ and ⌧

✓ can be modeled
with arbitrarily large length scales. Fig. A.1 shows the score of the GP and Fig. A.2 shows the
evolution of the GP prediction and standard deviation with increasing numbers of training samples.
We can see, that with only 10 training samples the variations in the sinusoidal relationship are
very precisely captured.

Ntr N⇤ lg �
2
g �

2
n,g Score

5

50 [3.1416, 100, 100, 100] 10.0 10�6

0.7048
10 1.0
25 1.0
50 1.0

Table A.1: State GP Predictions for x2 = ✓̇

Figure A.1: State GP Prediction Score vs. No. Training Samples for x2 = ✓̇

It appears that univariate sinusoidal functions are straightforward to parameterize
based on intuition. The challenge, is that in real applications, we will know very little, if anything
about the structure of the true function. However, if its synthetic equivalent is approximated by
a quadratic or sinusoidal function, we can at least set approximate initial values to the hyperpa-
rameters, from which they can be further optimized by maximizing the marginal log likelihood
function (see Sec. 2.5).

A.2.2 Cost GP Prediction

The stage cost was synthesized as the squared deviation of the angle x1 = ✓ from the upright
position ✓ = 0. One challenge that arises with this formulation, is that if the pendulum swings
around 360�, this cost function evaluates to (2⇡)2 rather than 0. Additionally, a pendulum that

72 A.3. Results of MPC Simulations

swings beyond the downward position by 1� results in a higher cost function then if it stops 1�

short of this mark. A more accurate model would reflect the symmetry of the problem and could
be formulated as min(mod(✓/2⇡), 2⇡ �mod(✓/2⇡)). While this was tested, it resulted in a more
complex, periodic cost function and so for the sake of simplicity the basic quadratic function is used
for the experiments conducted in this work, while the variables ✓ and ✓̇ are instead constrained to
be between �⇡ and ⇡.

Table A.2 gives the parameterization of the stage cost function with the corresponding
scores for increasing numbers of training samples. Note how, since the function is known to
be independent of variables ⌧

✓, ⌧
✓
w and ✓̇, we can safely set the corresponding length scales to

arbitrarily small values, thereby implementing Automatic Relevance Determination. Fig. A.3
shows the increase in GP score and Fig. A.4 illustrates the GP model of the quadratic stage
cost for increasing numbers of training samples. As can be expected for a quadratic function
parameterized based on its domain, the GP has attained a near perfect model with only 5 training
samples.

Ntr N⇤ ll �
2
l �

2
n,l Score

5

50 [62.8319, 10�6
, 10�6

, 10�6] 50 10�6

1.0
10 1.0
25 1.0
50 1.0

Table A.2: Cost GP Predictions

A.3 Results of MPC Simulations
In this section the results of the MPC simulation for a single inverted pendulum over 300 time-
steps are compared for the true functions and the GP-modeled functions. Refer to Sec. 4.2 for
a description of the variables plotted. The inverted pendulum and GP parameters are given in
Tables A.3 and A.4, respectively.

m g l ⌘ ✓k ✓k ✓̇k ✓̇k ⌧
✓

⌧✓

0.15 9.81 0.5 0.1 �⇡ ⇡ �⇡ ⇡ �1 1

Table A.3: Inverted Pendulum Parameters

Dynamic State/Stage Cost Function Ntr,0 Ntr �t
d
x / �t

d
l [s]

Dynamic State 100 200 0.1
Stage Cost 25 50 0.1

Table A.4: GP Parameters

The disturbances were set as:

⌧
✓
w,k0

=

8
><

>:

�0.5 for k0 2 [74, 76], [224, 226]

0.5 for k0 2 [149, 151]

0 otherwise

Fig. A.5 shows the convergence of the primal variables (top plot), dual variables (middle
plot) and horizon cost (bottom plot) and Fig. A.6 shows the convergence of the L2-norm of the
change between adjacent iterations for the first simulation time-step k0 = 0. While there are some

Appendix A. Additional Application to an Inverted Pendulum System 73

Function Models �t MaxIter ⌫ T N ↵ ⌘ ✏

True Model
0.1 2000 10�4 300 3 0.03 1 1GP Model

Table A.5: Batch MPC Simulation Parameters

oscillations in the convergence, the variables clearly settle to an optimum value - although several
hundred iterations are required.

Fig. A.7 shows the trajectory of the true states x0 (fetched from the true system
A.4), optimized control inputs u0, horizon cost L(z) and equality constraint violation F (z) over a
simulation period of 300 0.1-second time-steps (see Sec. 4.2 for a full description of the variables).
The trajectories for the batch approach are compared for the case when the true functions are used
in Fig. A.7a and when the GP-learned functions are employed instead in Fig. A.7b. Clearly, the
trajectories are very similar, with small variations around the true optima when GPs are used to
model the system and stage cost.

While online experiments were conducted for the inverted pendulum system, it was
found to perform poorly for the true functions across a range of maximum iterations and horizon
lengths and for the GP-modeled functions to become unstable. This could at least in part be due
to the nature of the control logic: when the time derivative of the angle (x2 = ✓̇) is equal to 0,
the pendulum is seen to be stationary. When it is positive (negative), the pendulum is seen to
be accelerating in the clockwise (counter-clockwise) direction. The optimal control input is thus
highly sensitive to the distinction between negative, null and positive values of the second state.
The result, is that inaccuracies, even small ones, in the GP model around the 0 point make it
difficult to control the system with very few iterations.

74 A.3. Results of MPC Simulations

(a) 5 Training Samples (b) 10 Training Samples

(c) 25 Training Samples (d) 50 Training Samples

Figure A.2: State GP Predicted Output vs. ✓ for ✓̇k+1 = g(✓k, ✓̇k, ⌧✓k , ⌧
✓
w,k)

Appendix A. Additional Application to an Inverted Pendulum System 75

Figure A.3: Stage Cost GP Prediction Score vs. No. Training Samples for lk = ✓
2
k. Note that on

this y-scale, the value 10.0 corresponds to a score of 1.0.

76 A.3. Results of MPC Simulations

(a) 5 Training Samples (b) 10 Training Samples

(c) 25 Training Samples (d) 50 Training Samples

Figure A.4: Stage Cost GP Predictions for lk = ✓
2
k

Appendix A. Additional Application to an Inverted Pendulum System 77

(a) True Function (b) GP

Figure A.5: Batch Variable Convergence for k0 = 0

(a) True Function (b) GP

Figure A.6: Batch Variable Norm Variation Convergence for k0 = 0

78 A.3. Results of MPC Simulations

(a) True Function (b) GP

Figure A.7: Batch Simulation Trajectories

Appendix B

Mathematical Background

B.1 Probability & Probability Density
This section is based on [38] Sec A.1. Let y be a (continuous or discrete) random variable. Let p(y)
be the probability density, where p(y) � 0 and

R
1

�1
p(y)@y = 1, and @y be the interval length. The

probability of sampling a given value y⇤ 2 [y, y + @y] is then p(y)@y and a given value y⇤ 2 [a, b] isR b
a py@y.

Let y = [y1, y2, . . . , yn] be a vector of n (continuous or discrete) random variables, with
a probability density function (defined over an infinitesimal interval for continuous variables) or
probability function (defined over a finite interval for discrete variables) of p(y). Then p(y) is a
joint probability over multiple random variables.

B.2 Joint, Marginal & Conditional Probability
This section is based on [38] Sec A.1.

Let us partition the vector of random variables y into two disjoint sets: yA and yB,
such that their union returns the original vector y = yA [yB and such that their joint probability
is expressed as p(y) = p(yA,yB) .

In order to find the probability of a given vector of one or more random variables yA,
we marginalize the joint probability over the remaining free variables yB. The marginal probability
of yA is given by Eqn. B.1 for continuous (B.1a) and discrete (B.1b) random variables.

p(yA) =

Z
p(yA,yB)dyB for continuous random variables (B.1a)

p(yA) =
X

p(yA,yB)dyB for discrete random variables (B.1b)

Note that if the vector yA contains more than one random variable, then the marginal-
ized probability is itself a joint probability of these variables. If the joint probability is equal to
the product of the marginal probabilities i.e. p(yA,yB) = p(yA)p(yB), we say that yA and yB

are independent variables, otherwise they are considered dependent variables.
In order to find the probability of yA given particular values of the vector yB, we

calculate the conditional probability, defined for p(yB) > 0 (as it is not meaningful to condition a
probability on an impossible event), calculated as in Eqn. B.2.

p(yA |yB) =
p(yA,yB)

p(yB)
(B.2)

If yA and yB are independent, then the marginal and conditional probabilities are
equal i.e.:

p(yA) = p(yA |yB). (B.3)

79

80 B.3. Bayes’ Theorem

B.3 Bayes’ Theorem

This section draws from [38] Sec A.1.
Using the expressions for conditional probabilities B.4:

p(yA |yB) =
yA,yB

p(yB)
(B.4a)

p(yB |yA) =
yA,yB

p(yA)
(B.4b)

we can express the conditional probability of yA given yB independently of the joint
distribution, as in Eqn. B.5.

p(yA |yB) =
p(yA)p(yB |yA)

p(yB)
(B.5)

B.4 Gaussian Identities

This section is based on [38] Sec A.2. The multivariate Gaussian (or normal) distribution of the
random variables y = [y1, y2, . . . , yn]T has a joint probability density function given by B.6a, given
in the compact form by B.6b.

p(yA |µA,KA) = (2⇡)�
n
2 |KA|�

1
2 exp

✓
�1

2
(yA � µA)TK�1

A (yA � µA)

◆
(B.6a)

yA ⇠ N (µA,KA) (B.6b)

where:

µA 2 Rn is mean vector (the mean corresponding to each random variable in yA

KA 2 Rn⇥n is the symmetric positive-definite covariance matrix

Let yA and yB be jointly Gaussian random vectors with a joint distribution given by
B.7.


yA

yA

�
⇠ N

✓
µA

µB

�
,


KAA KAB

KBA KBB

�◆
= N

 
µA

µB

�
,


K̃AA K̃AB

K̃BA K̃BB

��1
!

(B.7)

The marginal probability of yA is then given by B.8:

yA ⇠ N (µA,KAA) (B.8)

and the conditional probability of yA given yB is given by B.9:

yA |yB ⇠ N (µA � K̃
�1
AAK̃AB(yb � µB), K̃�1

AA) (B.9)

.
Note that the marginal and conditional probability distributions of Gaussian distribu-

tions are themselves Gaussian distributions.

Appendix B. Mathematical Background 81

B.5 Convex Sets
This section is based on [48] Sec 2.1.4.

Definition B.5.1 (Convex Set). A set C is defined as convex if the line segment between any two
points in C lies in C i.e. if for any x1,x2 2 C and any ✓ 2 [0, 1], we have:

✓x1 + (1� ✓)x2 2 C (B.10)

Let a convex combination of a set of points x1,x2, . . . ,xk be a point of the formPk
i=1 ✓ixi, where

Pk
i=1 ✓i = 1. A set is convex if and only if it contains every convex combi-

nation of its points.

B.6 Compact Sets
Compactness is a property of topological spaces. In Euclidean space, compactness is equivalent to
a set being closed and bounded. The formal definition is given by Def. B.6.1.

Definition B.6.1 (Compact Set). Define an open cover of a subset S of an open space X as a
collection of open sets that cover S. We define S as compact if for every open cover of S there
exists a finite subcover i.e. a finite number of open sets selected from each such collection can also
cover the set.

B.7 Mean Square Continuity & Differentiability
This section draws from [38] Sec. 4.1.1.

Mean square continuity and mean square differentiability are properties of stochastic
processes and help us to determine the smoothness of a Gaussian Process f(x) specified by a given
covariance kernel k.

Let x1,x2, . . . be a sequence of points and x⇤ 2 Rn be a fixed point such that the
sequence approaches the fixed point i.e. |xk � x⇤| ! 0 as k ! 1. A GP f(x) is continuous in
mean square over A if for all x⇤ 2 A ✓ Rn the mean square of the difference between the function
values at the sequence point and the fixed point approaches zero i.e. E[|f(xk�x⇤)|2]! 0 as k ! 0.

A GP f(x) is continuous in mean square at the input point x⇤ if and only if its covariance
kernel k(x1,x2) is continuous for the points x1 = x2 = x⇤. For a stationary kernel (a function of
|x1 � x2|) this requires that the kernel is continuous at x⇤ = 0.

We say that the GP f(x) is differentiable in the mean square sense and has a mean
square derivative @f(x)

@x if Eqn. B.11 holds along all dimensions i.

lim
h!0

E
"✓

f(x+ hei)� f(x)

h
� @f(x)

@xi

◆2
#
= 0 (B.11)

where:

ei is the unit vector in the i
th direction

The k
th order mean square partial derivative of f(x) exists for all x 2 Rnx (i.e. f is

smooth for all x) if the 2kth order partial derivative @2kk(x)
@x2k

i
(which is the covariance function of

the k
th derivative @f(x)

@xi
) exists and is finite at xi = 0 for all dimensions i.

82 B.7. Mean Square Continuity & Differentiability

Appendix C

Optimization Theory

C.1 Convex Functions
This section is based on [48] Sec. 3.1.1.

A function f : Rn 7! R is convex if dom(f) is a convex set (see Appendix B.5) and if
for all x,y 2 dom(f) and ✓ 2 [0, 1], we have:

f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y). (C.1)

We say that f is concave if �f is convex. All affine functions are both convex and concave.

C.2 Convex Optimization Problems
This section is based on [48] Sec. 4.2.

A convex optimization problem is one of the form given by C.2.

min
x2D

f0(x) (C.2a)

s.t. fi(x)  0 8 i = 1, . . . ,m (C.2b)

a
T
i x = bi 8 i = 1, . . . , p (C.2c)

where:

the objective function f0 is convex

the inequality constraint functions f1, . . . , fm are convex

the equality constraint functions hi(x) = a
T
i x� bi 8 i = 1, . . . , p are convex

The consequence of these qualifications is that the feasible set is convex. Thus, in a
convex optimization problem, we minimize a convex function over a convex set.

C.3 Karush-Kuhn Tucker (KKT) Optimality Conditions
This section is based on [48] Sec. 5.5.3.

Let C.3 be the primal problem and C.4 be the corresponding dual problem.

min
x

f0(x) (C.3a)

s.t. fi(x)  0, i = 1, . . . ,m (C.3b)
hi(x) = 0, i = 1, . . . , p (C.3c)

83

84 C.4. Order of Convergence & Rate of Convergence

max
�,µ

g(�,µ) := inf
x

L(x,�,µ) (C.4a)

s.t. � ⌫ 0 (C.4b)

where:

L(x,�,µ) := f0(x) + �T

2

64
f1(x)

...
fm(x)

3

75+ µT

2

64
h1(x)

...
hp(x)

3

75 is the Lagrangian function

Assume that the constraint functions f1, . . . , fm, h1, . . . , hp are differentiable, but not
necessarily convex.

Let x?, �? and µ? be a (not necessarily unique) triplet of primal and dual optimal
points with zero duality gap i.e. strong duality holds such that f(x?) = g(�?

,µ?). Since x?

minimizes L(x,�?
,µ?) over x, it follows that the gradient of the Lagrangian with respect to x

must vanish at x?:

rxL(x?
,�?

,µ?) = rxf0(x
?) + �?T

2

64
rxf1(x?)

...
rxfm(x?)

3

75+ µ?T

2

64
rxh1(x?)

...
rxhp(x?)

3

75 = 0 (C.5)

For any optimization problem with differentiable cost and constraint functions for which
strong duality holds, any pair of primal and dual optimal points must satisfy the Karush-Kuhn
Tucker (KKT) optimality conditions, given by C.6.

fi(x
?)  0, i = 1, . . . ,m (C.6a)

hi(x
?) = 0, i = 1, . . . , p (C.6b)
�i � 0, i = 1, . . . ,m (C.6c)

�ifi(x
?) = 0, i = 1, . . . ,m (C.6d)

rxL(x,�?
,µ?)(x?) = 0 (C.6e)

When the primal problem C.3 is convex i.e. fi is convex for all i = 1, . . . ,m and hi is
affine for all i = 1, . . . , p, any pair of primal-dual points that satisfy the KKT conditions are also
primal and dual optimal with zero duality gap.

C.4 Order of Convergence & Rate of Convergence
A convergent sequence xn with a limit x

? is said to have an order of convergence q � 1 and rate
of convergence µ if C.7 holds.

lim
n!1

|xn+1 � x
?|

|xn � x?|q = µ (C.7)

where:

q = 1 describes Q-linear convergence

q = 2 describes Q-quadratic convergence

q = 3 describes Q-cubic convergence

Appendix C. Optimization Theory 85

C.5 Regret
In game theory, the regret of a decision maker (an online optimization algorithm in our case) is
defined as the difference between the total cost it has incurred and that of the best fixed decision
in hindsight. A good online optimization algorithm minimizes the upper bound of the worst-case
regret (see [53] Sec 1.1).

Let A be an online algorithm, L⌧ be the cost function at the ⌧
th iteration, L be the

bounded family of cost functions and MaxIter be a given maximum number of iterations.
The instantaneous regret at iteration ⌧ describes the loss incurred by evaluating the

objective function at the real-time optimizer z⌧ instead of the batch optimizers, and is given by
C.8.

r⌧ := L⌧ (z⌧)�min
z2Z

L⌧ (z) � 0 (C.8)

The cumulative regret of A is the sum of the instantaneous regret values over MaxIter
iterations, and is given by C.9.

RT (A) :=
MaxIterX

⌧=1

r⌧ (C.9)

If we can prove that the cumulative regret is sublinear for algorithm A as in Fig. C.1
i.e. the rate of increase of cumulative regret decreases with increasing iteration number:

lim
⌧!1

R⌧

⌧
= 0 (C.10)

this implies that averaged over time, algorithm A performs just as well as the best fixed
strategy in hindsight. We say that such an algorithm is no regret, because most of the time it will
eventually converge to a close-to-optimal solution.

Figure C.1: Sublinear Cumulative Regret: if an algorithm has sublinear regret, it can be proven
that the generated sequence of iterates eventually converges to the true optimizer of the objective
function.

We also consider the average regret to compare regret to optimization error. Let z̄ =
1

MaxIter
PMaxIter

⌧=1 z⌧ be the average decision. Assuming that the functions L1, . . . , LMaxIter are all
equal to a single real-valued convex function L : Z 7! R, then by Jensen’s Inequality (defined in
Appendix D.8):

86 C.5. Regret

l

1

MaxIter

MaxIterX

⌧=1

z⌧

!
 1

MaxIter

MaxIterX

⌧=1

l(z⌧)

l(z̄)� l(z?) 
1

MaxIter

MaxIterX

⌧=1

[l(z⌧)� l(z?)] =
r⌧

MaxIter

(C.11)

which implies that l(z̄) converges to l(z?) at a rate at most the average regret.

Appendix D

System & Control Theory

D.1 Controllability, Observability & Stabilizability of a Sys-
tem

Definition D.1.1 (Controllability, [44] Sec 1.3.4). A system is controllable if, for any pair of
states x1,x2 in the state space, x2 can be reached (or controlled to) in finite time from x1.
Definition D.1.2 (Observability, [44] Sec 1.4.5). A system ẋ = f(x,u,w) is observable if
there exists a finite horizon length N , such that for every initial state x0, N measurements
[y0,y1, . . . ,yN�1] distinguish uniquely the initial state x0.
Definition D.1.3 (Stabilizability, [44] Ex. 1.19). A system ẋ = f(x,u,w) is stabilizable if any
uncontrollable nodes (or states) are stable.

D.2 Discretizing a Nonlinear Continuous Dynamical System
For MPC and other digital control purposes the continuous-time (CT) dynamic state equations
must be converted to discrete-time equations. In this section we describe two methods of discretiz-
ing a nonlinear continuous-time dynamical system.

Consider a continuous time-invariant system D.1

ẋ = f(x,u,w)

y = h(x,u)
(D.1)

with states x(t) 2 Rnx , measured outputs y(t) 2 Rny , control inputs u(t) 2 Rnu and disturbances
w(t) 2 Rnw . We define the discrete time index k such that t = k�t where �t is the sampling
time. The time instances of relevance when the measured outputs will be sampled and the control
inputs applied and held are then k�T | k = 0, 1, . . . , N � 1. In general, the control input at time
k�t, uk = u(k�t) will be held constant for the time interval t 2 [k�t, (k + 1)�t) such that the
continuous control inputs u(t) relate to the discrete control inputs uk as:

u(t) = uk, t 2 [k�t, (k + 1)�t) (D.2)

The states are modeled and the outputs measured at the same discrete time intervals such that the
continuous states x(t) and measured outputs y(t) relate the discrete states and measured outputs
as:

yk = y(k�t) (D.3)
xk = x(k�t) (D.4)

Discretization refers to the derivation of a discrete dynamic state equation from the continuous
model:

xk+1 = f
d(xk,uk,wk) (D.5)

87

88 D.3. Jensen’s Inequality

D.2.1 First-Order Taylor Series Discretization

The Taylor Series first-order discretization method approximates a constant rate of change ẋ =
f(x,u,w) over the discretization sampling interval �t, such that the discretized dynamic state
equation is given by Eqn. D.6.

xk+1 = xk +�tf(xk,uk,wk) (D.6)

D.2.2 Runge-Kutte Discretization

The fourth-order Runge-Kutte methods [54] are a generalization of the Euler discretization method
in that they allow for multiple evaluations of the derivative in the neighborhood of the input
variables, see D.7.

k1 = f(x,u,w) (D.7a)

k2 = f(x+�t
k1

2
,u,w) (D.7b)

k3 = f(x+�t
k2

2
,u,w) (D.7c)

k4 = f(x+�tk3,u,w) (D.7d)

xk+1 = xk +
1

6
(k1 + 2k2 + 2k3 + k4) (D.7e)

D.3 Jensen’s Inequality
Let a Euclidean space be defined as in Def. D.3.1.

Definition D.3.1 (Euclidean Space). A Euclidean space E is a finite dimensional space endowed
with an inner product h·, ·i and the Euclidean norm k·k = h·, ·i.

Definition D.3.2 (Jensen’s Inequality). Jensen’s Inequality is satisfied for a convex function
f : E 7! [�1,1) if it holds that:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y) (D.8)

D.4 Game Theory

D.4.1 Stackelberg Game

A Stackelberg game consists of multiple players (or decision makers). One player (the leader)
makes the first decision. The remaining players (the followers) observe Player 1’s decision and
subsequently make their decisions in parallel.

D.4.2 Social Welfare Problem

In a social welfare optimization problem, the cost function consists of the sum of individual weighted
utilities for each player and is maximized over all feasible allocations that satisfy certain constraints.

D.4.3 Multi-Armed Bandit Problem

In a multi-armed bandit problem, a fixed and limited set of resources must be allocated between
competing choices such that their expected gain is maximized, where each choice’s properties are
only partially known at the time of allocation, and may become better understood as time passes
or by allocating resources to the choice [55].

Appendix D. System & Control Theory 89

D.5 Tikhonov Regularization
In the context of optimal control, Tikhonov regularization involves augmenting the cost function
with the scaled Euclidean norm of the optimization variable vector. Let x be a vector of optimiza-
tion variables and f0(x) be the cost function. The unconstrained optimal control problem is given
by D.9.

min
x

f0(x) (D.9)

The Tikhonov regularized equivalent is given by D.10 for � > 0.

min
x

f0 + � kxk22 (D.10)

Bibliography

[1] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model Pre-
dictive Control: Toward Safe Learning in Control,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, no. 1, pp. 269–296, 2020.

[2] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. yves Glorennec, H. Hjalmars-
son, and A. Juditsky, “Nonlinear Black-Box Modeling in System Identification: a Unified
Overview,” Automatica, vol. 31, pp. 1691–1724, 1995.

[3] A. Bemporad and M. Morari, “Robust Model Predictive Control: A Survey,” in Robustness
in Identification and Control, 1998.

[4] A. Mesbah, “Stochastic Model Predictive Control: An Overview and Perspectives for Future
Research,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30–44, 2016.

[5] S. Bahrami, V. W. S. Wong, and J. Huang, “An Online Learning Algorithm for Demand
Response in Smart Grid,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4712–4725,
2018.

[6] A. Lesage-Landry and J. A. Taylor, “Setpoint Tracking With Partially Observed Loads,” IEEE
Transactions on Power Systems, vol. 33, no. 5, pp. 5615–5627, 2018.

[7] A. Lesage-Landry and D. S. Callaway, “Dynamic and Distributed Online Convex Optimization
for Demand Response of Commercial Buildings,” IEEE Control Systems Letters, vol. 4, p. 632
637, Jul 2020.

[8] P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent
Energy Systems, and Smart Loads,” IEEE Transactions on Industrial Informatics, vol. 7,
no. 3, pp. 381–388, 2011.

[9] J. Su, Y. Jiang, A. Bitlislioglu, C. N. Jones, and B. Houska, “Distributed Multi-Building
Coordination for Demand Response,” 2021.

[10] N. Gatsis and G. B. Giannakis, “Residential Load Control: Distributed Scheduling and Con-
vergence With Lost AMI Messages,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 770–
786, 2012.

[11] B. Lokeshgupta, A. Sadhukhan, and S. Sivasubramani, “Multi-Objective Optimization for De-
mand Side Management in a Smart Grid Environment,” in 2017 7th International Conference
on Power Systems (ICPS), pp. 200–205, 2017.

[12] J. Koshal, A. Nedic, Uday, and V. Shanbhag, “Multiuser Optimization: Distributed Algo-
rithms and Error Analysis,” SIAM J. Control Optim, pp. 1046–1081, 2011.

[13] A. M. Ospina, A. Simonetto, and E. Dall’Anese, “Personalized demand response via shape-
constrained online learning,” in 2020 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6, 2020.

90

Bibliography 91

[14] X. Zhou, E. Dall’Anese, and L. Chen, “Online Stochastic Optimization of Networked Dis-
tributed Energy Resources,” IEEE Transactions on Automatic Control, vol. 65, no. 6,
pp. 2387–2401, 2020.

[15] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-Theoretic Regret
Bounds for Gaussian Process Optimization in the Bandit Setting,” IEEE Transactions on
Information Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[16] F. Berkenkamp, A. P. Schoellig, and A. Krause, “No-Regret Bayesian Optimization with
Unknown Hyperparameters,” 2019.

[17] S. Van Vaerenbergh, J. Via, and I. SantamarÃa, “Nonlinear System Identification using a New
Sliding-Window Kernel RLS Algorithm,” Journal of Communications, vol. 2, 05 2007.

[18] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least-Squares Algorithm,” IEEE
Transactions on Signal Processing, vol. 52, no. 8, pp. 2275–2285, 2004.

[19] L. Hoegaerts, L. De Lathauwer, I. Goethals, J. Suykens, J. Vandewalle, and B. De Moor, “Effi-
ciently Updating and Tracking the Dominant Kernel Principal Components,” Neural Networks,
vol. 20, no. 2, pp. 220–229, 2007.

[20] J. Hanson, M. Raginsky, and E. Sontag, “Learning Recurrent Neural Net Models of Nonlinear
Systems,” 2020.

[21] D. Liao-McPherson, T. Skibik, J. Leung, I. Kolmanovsky, and M. M. Nicotra, “An Analysis
of Closed-Loop Stability for Linear Model Predictive Control Based on Time-Distributed
Optimization,” 2020.

[22] A. Zanelli, Q. T. Dinh, and M. Diehl, “A Lyapunov Function for the Combined System-
Optimizer Dynamics in Nonlinear Model Predictive Control,” 2020.

[23] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based Model Predictive
Control for Safe Exploration,” 2018.

[24] A. Jain, T. Nghiem, M. Morari, and R. Mangharam, “Learning and Control Using Gaus-
sian Processes,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pp. 140–149, 2018.

[25] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard, “Gaussian Process Model
Based Predictive Control,” in Proceedings of the 2004 American Control Conference, vol. 3,
pp. 2214–2219 vol.3, 2004.

[26] F. Berkenkamp and A. P. Schoellig, “Safe and Robust Learning Control with Gaussian Pro-
cesses,” in 2015 European Control Conference (ECC), pp. 2496–2501, 2015.

[27] Y. Tang, E. Dall’Anese, A. Bernstein, and S. Low, “Running Primal-Dual Gradient Method
for Time-Varying Nonconvex Problems,” 2018.

[28] Y. Tang, Time-Varying Optimization and Its Application to Power System Operation. PhD
thesis, 2019.

[29] A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online Primal-Dual Methods With Mea-
surement Feedback for Time-Varying Convex Optimization,” IEEE Transactions on Signal
Processing, vol. 67, no. 8, pp. 1978–1991, 2019.

[30] T. Chen and G. B. Giannakis, “Bandit Convex Optimization for Scalable and Dynamic IoT
Management,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1276–1286, 2019.

[31] Y. Li, X. Chen, and N. Li, “Online Optimal Control with Linear Dynamics and Predictions:
Algorithms and Regret Analysis,” 2019.

92 Bibliography

[32] S. Koch, J. L. Mathieu, and D. S. Callaway, “Modeling and Control of Aggregated Heteroge-
neous Thermostatically Controlled Loads for Ancillary Services,” in in Proc. Power Systems
Computation Conf, 2011.

[33] J. L. Mathieu, M. Kamgarpour, J. Lygeros, and D. S. Callaway, “Energy Arbitrage with
Thermostatically Controlled Loads,” in 2013 European Control Conference (ECC), pp. 2519–
2526, IEEE, 2013.

[34] J. L. Mathieu and D. S. Callaway, “State Estimation and Control of Heterogeneous Thermo-
statically Controlled Loads for Load Following,” in 2012 45th Hawaii International Conference
on System Sciences, pp. 2002–2011, IEEE, 2012.

[35] M. Kamgarpour, C. Ellen, S. E. Z. Soudjani, S. Gerwinn, J. L. Mathieu, N. Müllner, A. Abate,
D. S. Callaway, M. Fränzle, and J. Lygeros, “Modeling Options for Demand Side Participa-
tion of Thermostatically Controlled Loads,” in 2013 IREP Symposium Bulk Power System
Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid,
pp. 1–15, IEEE, 2013.

[36] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive
Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement
Learning,” 2010.

[37] S. J. Gershman and D. M. Blei, “A Tutorial on Bayesian Nonparametric Models,” Journal of
Mathematical Psychology, vol. 56, no. 1, pp. 1–12, 2012.

[38] C. E. Rasmussen, Gaussian Processes for Machine Learning. MIT Press, 2006.

[39] P. Bartlett, “Reproducing Kernel Hilbert Spaces,” 2008.

[40] R. Neal, “Lecture Notes in Statistics,” Bayesian Learning for Neural Networks, 1996.

[41] A. McHutchon, “Differentiating Gaussian Processes,” 2013.

[42] N. Aronszajn, “Theory of Reproducing Kernels,” Transactions of the American mathematical
society, vol. 68, no. 3, pp. 337–404, 1950.

[43] T. X. Nghiem and C. N. Jones, “Data-driven demand response modeling and control of build-
ings with Gaussian Processes,” in 2017 American Control Conference (ACC), pp. 2919–2924,
2017.

[44] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation, and
Design. Nob Hill Publishing, 2017.

[45] E. DallâAnese, A. Simonetto, S. Becker, and L. Madden, “Optimization and Learning With
Information Streams: Time-varying algorithms and applications,” IEEE Signal Processing
Magazine, vol. 37, p. 71â83, May 2020.

[46] A. Beck, First-Order Methods in Optimization. SIAM, 2017.

[47] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with
MATLAB. SIAM, 2014.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. 03 2004.

[49] A. Beck and M. Teboulle, “A Conditional Gradient Method with Linear Rate of Convergence
for Solving Convex Linear Systems,” Mathematical Methods of Operations Research, p. 235
247, 2004.

[50] B. Wittenmark, “Adaptive Dual Control Methods: An Overview,” in In 5th IFAC symposium
on Adaptive Systems in Control and Signal Processing, pp. 67–72, 1995.

[51] A. Henry, “https://github.com/achenry/online-gp-mpc.”

[52] “TCL Building Control Input-Output Data.”

[53] E. Hazan, Introduction to Online Convex Optimization. 2019.

[54] J. Butcher, “Numerical Methods for Ordinary Differential Equations,” pp. i–xxiv, 08 2016.

[55] Z. Ying, “Multi-Armed Bandit Allocation Indices,” Technometrics, vol. 33, 03 2012.

Automatic Control Laboratory

Title of work:

Real-Time Learning-Based Model Predictive Control:

Online Algorithms and Applications in Energy Systems

Thesis type and date:

Master Thesis, March 2021

Supervision:

Prof. Emiliano Dall’Anese, Systems & Control, University of Colorado Boulder
Prof. Florian Dörfler, Automatic Control Laboratory, ETH Zürich

Student:

Name: Aoife Henry
E-mail: henrya@student.ethz.ch
Legi-Nr.: 18-946-756
Semester: 5

Statement regarding plagiarism:

By signing this statement, I affirm that I have read and signed the Declaration of Originality,
independently produced this paper, and adhered to the general practice of source citation in this
subject-area.

Declaration of Originality:

http://www.ethz.ch/faculty/exams/plagiarism/confirmation_en.pdf

Boulder CO, 20. 3. 2021:

http://www.ethz.ch/faculty/exams/plagiarism/confirmation_en.pdf

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

