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Abstract— Efforts to make wind energy, generated by wind
farms, a viable replacement for fossil fuel-based alternatives de-
pend on reliably maximizing the efficiency of wind farm energy
generation. Maximizing the utility of such wind farms relies on
control methods which can optimally operate the individual
turbines on a second-by-second basis to maximize the total
farm-level power made available to the grid. Given the time-
varying and stochastic nature of wind farms: unpredictable
wind fields, wakes generated by turbines, turbulence, obtaining
an accurate model of the wind field dynamics is not realistic.
We implement a model-free, dual time-scale reinforcement
learning (RL) algorithm to learn both the optimal yaw and
axial induction factor control actions of each wind turbine to
track a given time-varying power reference while limiting the
yaw travel and loading experienced by the turbines.

I. INTRODUCTION

Energy produced by wind farms have potential to sat-
isfy increasing demand for fossil-free energy within the
constraints of the electricity grid. They can be controlled
to attain different, sometimes competing objectives, such
as power maximization, power tracking or wind turbine
fatigue minimization [1]. However, in order for wind farms
to present as a viable alternative to more carbon-intensive
sources of energy, it is critical that they can be controlled to
fulfill the reliability demands of the grid.

Typically, the objective of wind farm control is to max-
imize the total power generated by the wind farm while
minimizing the fatigue loading on the turbines. However,
in this work we propose an alternative objective, that of
firm power tracking. This involves tracking a given time-
varying power reference, which the wind farm operators
offered to the transmission systems operator (TSO) ahead
of time, as accurately as possible. If wind energy is to
remain competitive in the energy market, they must have the
capacity to meet more complex grid needs such as this. The
consequence of naively maximizing power generation is that
wind farms may be curtailed, thus losing valuable fossil-free
energy generation.
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Fig. 1: Example of a Floating Offshore Wind Farm with vary-
ing yaw angles. The blue Gaussians represent the possible
locations of each turbine.

A wind farm is a time-varying environment with stochastic
dynamics, in that a) at any moment there is a nonzero
probability poff that any given wind turbine could ‘go offline’,
i.e. fail and temporarily cease to operate or be intentionally
curtailed by the operator for maintenance reasons, and b)
the wind speed and direction incident upon each turbine is
subject to variation in time and atmospheric turbulence. To
achieve any wind farm objective, we have two control actions
for each wind turbine available: the yaw angle γ - which
controls the lateral orientation of the wind turbine rotor - and
the axial induction factor a - which controls what proportion
of the wind’s energy the turbine extracts. There are several
challenges associated with yaw control. Firstly, there is a
significant time-delay between when a the yaw command
is transmitted and the time it takes to execute it. Secondly,
there is a tight constraint on the rate of change of the yaw
angle (which is generally fixed) and the overall yaw travel
due to the mechanical loads experienced by the yaw bearing
and other wind turbine components during rotation. Thirdly,
naive yaw control is greedy, in that each wind turbine
aligns itself into the wind based on local measurements in
order to maximize the power it generates. A consequence of
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this greedy operation is that wakes generated behind wind
turbines, can result in a wind field of reduced velocity and
increased turbulence for downstream wind turbines. This is
known as the wake effect and is difficult to model accurately
with analytical models. This motivates the use of a model-
free centralized controller to determine the optimal operation
of all wind turbines in a farm to manage farm-level power
generation.

The RL controls methodology involves training one or
more ‘agents‘ to generate optimal control actions by allowing
to interact with the environment, rewarding actions that
results in positive outcomes and/or penalizing actions that
result in negative outcomes. deep reinforcement learning
(DRL) is a model-free variation that employs artificial neural
networkss (ANNs) to learn the value functions central to the
approach. It has been shown to perform well in [?]

Some work has been published on the application of RL
methods to wind farm control. Yang et al present a deep RL
method applied to a wind farm with connected energy storage
and external reserve purchasing that considers forecasted
wind conditions and electricity prices to maximize the farm’s
long-term revenue. Futakuchi et al similarly optimize the
scheduled operation of a wind farm with energy storage
using DRL to manage ramp events in [2]. It assumes that the
wind turbines can be commanded to extract a given amount
of power from the wind, rather than explicitly considering
the actuation variables [3]. Saenz-Aguirre et al apply a
RL Q-Learning method to yaw control of wind farms [4].
The authors do not consider axial induction factor as an
actuation variable or indeed platform relocation considering
that the study is based on an onshore wind farm. Zhao et
al propose a knowledge-assisted RL framework to control
the axial induction factor of turbines in a wind farm based
on the freestream wind speed with integrated low-fidelity
analyctical wake models to ensure safety of the wind turbines
during the online learning process [5]. The authors consider
a varying wind-speed but a constant wind direction, which
does not fully test the true use-case for yaw control. Dong
et al present a RL methodology to control the yaw angles of
a collection of wind turbines that is robust to uncertain wind
conditions and yaw actuation models [6]. Dong and Zhao
develop a robust RL methodology to track a time-varying
farm-level power reference by controlling the thrust coeffi-
cient (equivalent to controlling the axial induction factor) of
the turbines and including previews of the reference signals
as augmented states in the system [7]. The authors choose not
to consider yaw angles due to the time delay, which limits its
capacity to track a time varying power reference on a shorter
time scale. Vijayshankar et al propose a SARSA-based DRL
approach to track a time-varying power reference signal via
yaw control [8]. Stanfel et al present a distributed, multi-
agent RL approach to maximize farm-level power generation
via yaw control [9]. None of the above works consider both
yaw and axial induction control to track power reference
changes over a range of time-scales, nor do they consider
the additional actuation variable of platform relocation in
the offshore wind-farm case. They also assume a fixed wind

farm layout and do not consider the possibility of one or
more wind turbines going offline for maintenance purposes
or due to faulty equipment.

There are various challenges in the field of wind farm
control that make it suitable but challenging for an RL
approach. Firstly, with offline training of any model, the
wake field can only be predicted for the wind farm lay-
out (i.e. fixed turbine locations and online/offline status),
to support this, we include wind conditions and control
parameters included in the training data. Low-fidelity static
wake models are not sufficiently accurate to predict unsteady
wake fields and high-fidelity models require too much time
to generate predictions in a model-based controls algorithm,
making this a suitable environment for RL. Secondly, the
full set of inputs that contribute to the total wind-farm
level power includes each turbine’s control actions and wind
speed/direction measurements across the wind farm, and thus
is high-dimensional and noisy (QUESTION is RL robust to
this). Thirdly, DRL provides a paradigm that is robust to
stochasticity in the environment and model uncertainty by
leveraging deep learning methods (QUESTION is this true).
Finally, centralized control of wind farms is a non-tractable
problem, given the large action and state space this presents
a challenge for modern control algorithm but an environment
that could be suitable for deep RL methods that are capable
of dealing with high dimensional data.

In this work, we develop a framework to learn the optimal
control actions for each wind turbine in a wind farm using
a DRL methodology. Our contributions are as follows:

• We develop a single-agent RL algorithm for stochastic,
time-varying control of wind farm environments using
the deep deterministic policy gradient (DDPG) algo-
rithm to track a given time-varying power reference.
Unlike previous works we adopt a dual time-scale
approach to generate control actions for both the yaw
misalignment and the axial induction factor.

• We employ a reward functions that track a time-varying
power reference and limit the yaw travel of the turbines.

• We consider a state-space of autoregressive observations
in the wind farm to account for the delayed influence of
historic changes in the freestream wind field and wind
turbine actuation on the current wind field experienced
by individual turbines.

• We employ a replay buffer that is guaranteed to contain
training data collected from ‘novel‘ wind farm layouts
in which one or more turbines were not operational
and thus not significantly influencing the wind farm
dynamics.

• We test validate the framework on a simulated 9 × 9
wind farm across multiple episodes.

II. METHODOLOGY

A. Reinforcement Learning

In RL, an agent learns how to map observations of its
environment to actions so as to maximize a numerical reward
via a trial-and-error approach, where actions taken in the
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present may influence not only the immediate next reward
but also subsequent rewards [10].

At each time-step t, the agent tries to select an action
at ∼ π(at|st) that maximizes the discounted return with a
discount rate γ ∈ [0, 1]:

Gt =

T∑
i=t

γ(i−t)r(si, ai)

= r(st, at) +

T∑
i=t+1

γ(i−t)r(si, ai)

= r(st, at) + γGt+1

(1)

The action-value function for policy π describes the ex-
pected return after taking an action at from state st and
thereafter following a policy π, and is thus is a measure for
how good it is to perform a given action in a given state:

Qπ(s, a) = Eπ [Gt|st = s, at = a] (2)

The action-value function satisfies the recursive relation-
ship known as the Bellman equation:

Qπ(s, a) = E [Gt|st = s, at = a]

= E [rt + γGt+1|st = s, at = a]

= E [rt + γQπ(st+1, at+1)]

(3)

If the policy can be described as a deterministic function
of the state, µ(s), then:

Qµ(s, a) = E [rt + γQµ(st+1, µ(st+1))] (4)

and the expectation depends only on the environment’s
influence on rt and st+1 (and not on the influence of a
stochastic policy π on at+1).

Temporal-Difference (TD) RL methods update estimates
of value functions, such as Qµ(s, a), based on other current
estimates. In particular, one-step TD (TD(0)) performs the
following update for a given non-terminal state, st:

Q(st, at)←Q(st, at)

+ αQ

rt + γQ(st+1, at+1)︸ ︷︷ ︸
target value

− Q(st, at)︸ ︷︷ ︸
current estimate


︸ ︷︷ ︸

TD error, δ
(5)

Policy-gradient methods involve learning a parameterized
policy, π(a|s, θ), by updating the parameters based on the
gradient of a performance measure, J(θ):

θ ← θ + α∇θĴ(θ) (6)

An actor-critic method is a policy-gradient approach
which involves learning a policy, µ(s), (the actor) and a

value function, Qπ(s, a), (the critic) to assess the action with.
deterministic policy gradient (DPG) [11] is one such method
which learns

• a deterministic parameterized actor function, µ(s|θµ)
with a policy-gradient update:

θµ ← θµ + αµ∇θµ Ĵ(θµ) (7)

where the performance measure is defined as the ex-
pected discounted return from the first-time step:

J = Eri,si∼E,ai∼µ [G1] (8)

and the gradient with respect to the actor function’s
parameters is found by applying the chain rule of
differentiation:

∇θµJ = Est∼E

[
∇θµQ

µ
(
st, µ(st|θµ)|θQ

)]
= Est∼E

[
∇aQ

µ
(
st, µ(st|θµ)|θQ

)
∇θµµ(st|θµ)

]
(9)

and,
• learns a parameterized critic function, Qµ(s, a|θQ) with

the TD(0) update:

θQ ←θQ + αQ∇θQQµ(st, at|θQ)rt + γQµ(st+1, at|θQ)︸ ︷︷ ︸
target value

−Qµ(st, at|θQ)︸ ︷︷ ︸
current estimate


(10)

Employing ANNs for the nonlinear function approxima-
tion of the action-value function and/or the policy is known
as DRL. In particular, learning the action-value function with
an ANN like this is known as deep Q network (DQN) [12].
In an actor-critic method, the parameterized critic can be
learned by minimizing the loss:

L(θQ) = E


rt + γQµ(st+1, µ(st+1|θµ))︸ ︷︷ ︸

target value

−Qµ(st, at|θQ)︸ ︷︷ ︸
current estimate


2

(11)
,
and the parameterized policy can be learned by minimizing
the loss:

L(θµ) = E
[
−Qµ(st, µ(st|θµ)|θQ)

]
(12)

Directly implementing DQN has proven to be unstable
in many environments since the learned critic network
Qµ(s, a|θQ) being updated is also used to calculate the target
value, so the update is prone to divergence.

DDPG is an actor-critic, model-free RL algorithm. It is
based on principles of DQN [12] and DPG [11] that can
robustly control systems with continuous action spaces and
model uncertainty [13]. It resolves the instability issues of
DQN by:

• creating a copy of the actor and critic networks,
µ′(s|θµ′

) and Q′(s, a|θQ′
), respectively to calculate the

target values,
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• training the networks off-policy with samples from a
replay buffer to minimize temporal correlations between
samples, and,

• applying ”soft” updates to the weights of these target
networks to give consistent targets during the updates:

θµ
′
← τθµ + (1− τ)θµ

′
(13a)

θQ
′
← τθQ + (1− τ)θQ

′
(13b)

where a small value of τ << 1 means that the target
weights are constrained to be updated very slowly,
greatly improving the stability of learning at the cost
of slower convergence.

B. Parameter Sharing

Naively employing DDPG in a multi-agent context,
would involve an actor network, critic network, target ac-
tor network and target critic network for each agent. A
less computationally-expensive alternative is to implement
parameter-sharing [14]. Since the observation and action
space of each turbine are heterogeneous, rather than main-
taining four networks for every agent, we use one of each
for all agents. This can be achieved by adding an agent
indicator variable to the observation space to distinguish
different agents.

III. WIND FARM ENVIRONMENT

The objective of the wind farm control presented in this
work is to implement and evaluate a working RL algorithm
to learn the optimal operation of a 3 × 3 wind-farm given
stochastic variations in freestream wind speed, wind direc-
tions and online status of each turbine. To this end, we define
the features of the wind farm environment, observation space
and action space in this section for the purposes of integration
with a RL-based controls framework such as DDPG.

A. Continuous Action Space

Each turbine, denoted Ti for i ∈ T , is controlled by an
agent, which chooses the axial induction factor, ai ∈ [0, 1

3 ],
and yaw angle, γi ∈ [−30◦, 30◦], for that turbine at each
time-step. These values are normalized to be between 0 and
1 during learning to aid convergence of the neural networks.

B. Auto-Regressive & Previewed Observation Space

The observations received by the agent at each time-
step, ot, include the yaw and axial induction factor set-
tings executed by each turbine, the binary ‘offline‘ variable
corresponding to each turbine, the freestream wind speed
and the freestream wind direction over the last kdelay time-
steps. kdelay is chosen as U∞

δtxd
based on Taylor’s frozen

wake hypothesis, where we assume that, given a maximum
expected freestream wind speed U∞ and the minimum
downstream distance between any two turbines, xd, the wake
induced by an upstream turbine will take at most kdelay time-
steps to propagate downstream. Considering that historic
adjustments to yaw misalignment and axial induction factor
in upstream turbines influence the wind field experienced,
and thus the power generated, by downstream turbines,

we need to consider these auto-regressive inputs in our
observation space. Wind farm operators know the power
reference signal ahead of time since they provided it to the
TSO. We can exploit this preview information by including
the values from a given future number of time-steps, kpreview,
in our observation vector. As mentioned in Section II-B, an
additional variable as appended to the observation vector for
each turbine denoting its unique identifier (i.e. a number
between 1 and the number of turbines, |T |). Similar to the
action values, the observations values are normalized to be
between 0 and 1.

C. Wind Farm Dynamics

Several features of wind farm environment considered in
this work are stochastic and time-varying:

• the mean freestream wind-speed and direction changes
with probability pδU in positive or negative steps of
δU∞ and δÛ∞, respectively,

• the turbulence added to the mean freestream wind-speed
and direction is sampled from a Gaussian distribution
with zero-mean and variances σ2

ws and σ2
wd, respectively.

• the online status of any given turbine could be set to
false with a probability poffline at each time-step, such
that it will cease to operate and effectively have no
influence on the wind field dynamics within the wind
farm

D. Training Episodes

For each of Ntr training episodes, Ej , j ∈ {1, . . . , Ntr}
we randomly set the initial freestream wind speed and
direction (which is thereafter stochastically incremented or
decremented randomly at each time-step). Each episode is
set to be 1 hour in length with a discrete time-step of 1 s.

E. Dual Time-Scale Control

The yaw actuator works on a slow time-scale (minutes)
and it is preferable to limit the yaw travel (the total rotational
distance traveled over a given time period) such that the yaw
bearing will not need to be prematurely replaced. It is thus
not feasible to track a fast time-varying power reference with
power alone. The purpose of the yaw control in this work is
to make approximately enough wind power available to track
the power reference without incurring excessive rotor thrust
or yaw travel. The actuators which support axial induction
factor are comparatively fast (on the order of seconds). In
this work we control the axial induction factor to closely
track a given power reference once the yaw control has been
executed to make sufficient power available. These distinct
time-scales are implemented by holding a constant yaw angle
command until the yaw angle time interval, δtγ has passed,
and equivalently holding a constant the axial induction factor
command until the axial induction factor time interval, δta,
has passed.
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Fig. 2: Rewards when evaluating our learned policy from
PPO trained for 25,000 and 50,000 time steps, respectively,
across 5 episodes. Overall, we observe a deviation from
turbine power between the models in each episode.

F. Reward Functions for Firm Power Tracking, Rotor Thrust
Attenuation & Yaw Travel Attenuation

The reward function depends on the power tracking error,
the yaw travel undergone by each wind turbine and the rotor
thrust force experienced by each wind turbine:

rt = βP e
−αP ∥Pwf

t −P ref
t ∥ + βγe

−αγ max
i

Γi
t + βT e

−αT max
i

T i
t

(14)

where Pwf
t =

∑
i∈T P i

t is the total power generated by the
wind farm, P ref

t is the power reference signal, Γi
t is the yaw

travel experienced by turbine i over the last 10 minutes, T i
t is

the rotor thrust force experienced by turbine i at the current
time-step, and βP , βγ , βT are weighting coefficients.

G. Deliverable and Implementation Plan

See Table I.

Task Deadline Intended Deadline Member
Define Observations, State Space, Action Space,
Reward Function, Transition Dynamics - Done Aoife & Josh
Install Libraries - 11/01/2022 Aoife & Josh
Write Gym Environment subclass - 11/01/2022 Aoife & Josh
Write Agent Class - 11/03/2022 Aoife & Josh
Integrate QMIX Algorithm - 11/04/2022 Aoife & Josh
Transfer workflow to RC - 11/07/2022 Josh
Generate training episodes - 11/10/2022 Josh & Aoife
Train model - 11/11/2022 Josh
Submit final report 12/07/2022 11/18/2022 Aoife & Josh

TABLE I: Project Timeline

H. Software Tools

We use a suite of wind turbine simulation and RL soft-
ware packages throughout our project. Specifically, we used
FLORIS [15] to model the wake and turbine dynamics
(e.g., controls, positions) for our environment. We used
PyTorch [16] as the deep learning framework back-end for
our experiments. We implement our RL environment with the

popular OpenAI Gym [17] framework to allow for ease of
supplying actions and receiving observations for our agents.
To conduct our experiments, we implemented the QMIX
algorithm in RLLIB [18], during which we unfortunately
encountered incomplete evaluation support. Finally, we im-
plemented our single-agent algorithm, PPO, using the Stable
Baselines 3 [19] API.

I. Simulating a Stochastic Environment

There are multiples sources of uncertainty considered
in the wind farm model implemented in this work. We
simulate the setting where a turbine can go offline, how
turbines vary in the ocean, and wind dynamics. First, The
probability of any given turbine going ‘offline’ (i.e. either
being purposefully switched off by the operator or failing
due to a mechanical issue) at each time-step is given by
poff = 0.001. We use this value as a heuristic and future
work could involve drawing this probability from Bernoulli
distribution for each turbine.

Given that the turbines float in the water, they do not have
a fixed location at any given time. Formally, we model the
location of each wind turbine t at each time-step, k, is drawn
from a two-dimensional Gaussian distribution:

tk ∼ N
([

µx,t 0
0 µy,t

]
, σ2

xyI2

)
(15)

where µx,t and µy,t are the location set-points of turbine t in
the x and y planes, respectively, and σ2

xy = 1 is the variance
of the location distribution, which we consider to be constant
across both planes and all turbines.

Another element of our environment is how the wind speed
changes over time. The initial mean freestream wind speed
(i.e. the wind speed outside of the wind farm, before it is
influenced by the wake effect), ¯∥U∥∞ is randomly selected
from a uniform distribution of the integers between 8 and
16 m/s, inclusive. At each time-step thereafter, there is a
probability of pδu

2 = 0.05 that the mean wind speed will
increase by δ∥u∥ = 0.5 m/s and a probability of pδu

2 = 0.05
that the mean wind speed will decrease by δ∥u∥ = 0.5 m/s.
The mean wind speed is saturated between the limits of 8
and 16 m/s. Gaussian noise with zero mean and a variance of
δ∥u∥ = 0.5 m/s is then added to the mean value to simulate
stochastic turbulence effects.

Finally, to simulate a realistic environment, we account for
how the direction of the wind changes in a FOWF! (FOWF!)
over time. The initial mean freestream wind direction (i.e.
the wind direction outside of the wind farm, before it is
influenced by the wake effect), ∠̄U∞ is randomly selected
from a uniform distribution of the integers between 250◦

and 290◦, inclusive, where 270◦ corresponds to wind coming
from west to east, directly incident on the turbines in their
neutral yaw position. At each time-step thereafter, there is a
probability of pδu

2 = 0.05 that the mean wind direction will
increase by δ∠u = 5◦ and a probability of pδu

2 = 0.05 that
the mean wind direction will decrease by δ∠u = 5◦. The
mean wind direction is saturated between the limits of 250◦

and 290◦. Gaussian noise with zero mean and a variance
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Fig. 3: Distribution of PPO trained for 25,000 time steps
(left) and PPO trained for 50,000 time steps (right). Means
are marked with a green triangle. We observe less variation
when training for more time steps and a higher mean episode
reward.

of δ∠u = 5◦ is then added to the mean value to simulate
stochastic turbulence effects.

J. Single- vs. Multi-Agent

We considered and tested multiple ‘agent structures’ in
this project:

a) Single Agent: The single-agent case involves train-
ing a single agent to learn the optimal set-points for all 2T
control variables (the axial induction factor and yaw angle
for each of T turbines). On one hand, this is simple to
implement, but on the other hand can result in many states
and control variables, leading to a very complex problem.

b) Per-Turbine Agent: The per-turbine multi-agent case
involves training a separate agent for each turbine to learn
the 2 optimal set-points for that turbine. While this means
that each agent only has 2 control variables to consider, T
times as many agents need to be trained and each agent still
requires an observation space consisting of every turbine’s
location and control set-points. This means that the per-
turbine multi-agent is less memory efficient than the single-
agent case.

c) Neighborhood Agent: The neighborhood multi-agent
case involves dividing the wind farm into ‘neighborhoods’
of T̃ < T turbines and assigning an agent to control all of
the set-points for the turbines in that neighborhood. This is
effectively a compromise between the single-agent and per-
turbine multi-agent cases. For this approach, the selection
of the neighborhoods may prove to be a critical decision.
We propose quantifying the influence of each turbine on the
others with a graph structure and dividing the wind farm
based on this.

Quantifying the relative advantages and disadvantages of
the different approaches is left for further work. A useful

comparative metric could be the total training time and
computational resources required by each method to achieve
the same mean episode reward.

K. Utilizing Supercomputer Resources

All experiments were done using the Alpine High Per-
formance Computing Cluster hosted on CU RC Computing.
Model training was performed on a single NVIDIA A100
GPU, 32 CPUs, and CUDA 11.3 using Python 3.9.

IV. EXPERIMENTS

Prior to simulating the RL environment, we first generate
500 freestream turbulent wind speed and direction time-
series (see Sec. III of 24 hours each from which we can
derive achievable power reference signals. We then conduct
a number of experiments of varying complexity to test our
approach:

1) considering a static wind-farm environment (in which
there is no delay between when a change in wind or
control set-points occurs upstream and the resulting
wake has propagated downstream), constant power-
reference and online status of wind turbines, and the
reward function includes only the power-tracking error

2) same as experiment 1, with a full reward function (i.e.
including the power tracking, rotor thrust attenuation
and yaw travel attenuation terms)

3) considering a static wind-farm environment, full re-
ward function, and time-varying power-reference and
online statuses

4) considering a dynamic wind-farm environment (in
which there is a delay between when upstream changes
occur and resulting wakes propagate to downstream lo-
cations according to Taylor’s frozen wake hypothesis),
full reward function, and time-varying power-reference
and online statuses

A. Multi-Agent RL

For our multi-agent approach to wind farm control, we
implemented QMIX in the RLLIB [18] framework. We use
a batch size of 600 for all experiments, a learning rate of
.0001 using the Adam [20] optimizer, a discount factor (i.e.,
γ) of 0.99, and decay ϵ from 1 to 0 over 10,000 timesteps
for choosing actions using ϵ-greedy. Due to existing issues
with evaluating multi-agent algorithms in RLLIB, we use the
training reward as a proxy to compare against PPO.

B. Single-Agent RL

For our single-agent approach to wind farm control, we
implemented PPO in the Stable Baselines [19] framework.
For all experiments we use a batch size of 64, a γ of 0.99,
no ϵ-greedy, and a learning rate of .0003 with the Adam
optimizer. For evaluation, we take the average episode reward
over 5 episodes using Equation 16. Due to time and resource
constraints, we only run PPO for 25,000 and 50,000 time
steps to compare trends across the same algorithm.
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C. Baseline Firm Power-Tracking Control

We compare results from the proposed RL-based approach
to a baseline controls algorithm. This involves generating
a lookup table (LUT) of optimal yaw angles for a grid
of freestream wind-speeds and directions via least squares
programming, and choose axial induction factors based on
the Cp,i curve for each turbine to achieve 1

|T | th of the farm-
level power reference at each time-step, Pref, i.e. 1

|T |Pref =

C⋆
p,i

1
2πR

2ρU3
i ⇒ C⋆

p,i =
1

|T |Pref
1
2πR

2ρU3
i

, where can find a⋆i
by finding the roots of the third-order polynomial, C⋆

p,i =
4a⋆i (cos γi − a⋆i )

2.

V. RESULTS

A. Results

We now evaluate both single-agent and multi-agent RL
algorithms compared to baseline control algorithms. We
show results in Table II.

a) Baseline.: We consider two baselines for optimal
control of a wind farm. First, we consider the naı̈ve baseline
of all turbines having a yaw angle of 0 and an axial induction
factor of 0.33. We call this naı̈ve-baseline. The baseline
controller in this work is based on an optimization routine
provided with FLORIS [15]. This routine uses the Sequential
Least Squares Programming algorithm to iterate through
yaw angles and axial induction factors for each turbine to
maximize farm power. This is repeated for different wind
conditions to assemble a LUT, which is then used to schedule
yaw angles based on measured wind farm parameters, as in
[21]. We call this control-baseline.

b) Single-Agent RL.: We provide results for the best
performing PPO model evaluated on our wind farm environ-
ment. Specifically, we evaluate two different PPO models
trained for varying amount of time steps.

c) Multi-Agent RL.: We provide training results from
QMIX to supplement the issues with multi-agent evaluation
in RLLIB.

d) Evaluation Metric.: We compare the mean episode
reward (MER, i.e., Equation ??) across 5 episodes with a
fixed random seed. Specifically, we measure success as:

r(E) = 1

|E|
∑
E∈E

Rtotal(E) (16)

where E is the set of all episodes for evaluation. In theory,
Equation 16 is in the range [0, inf), indicating that a higher
reward (i.e., power generated) signifies better algorithm
performance.

B. Analysis with Respect to Algorithm Choice

First, we observe that QMIX has a significantly higher
MER than any other algorithm. We attribute this to potential
bugs in the implementation of QMIX as it is infeasible for
our turbines to generate that much power. When examining
correctly implemented algorithms, we observe that the naı̈ve
baseline outperforms the optimized baseline by generating
10 more MegaWatts on average. A potential reason for this
is that chosen optimizer (i.e., sequential least squares) did not

First Action Distribution

Action

Ac
tio

n

Fig. 4: Distribution of first action chosen for PPO trained
for 25,000 time steps and 50,000 time steps, respectively,
across 1,000 environment initializations. Overall, we observe
uniform action choices across both models.

lead to a sufficient solution. We observe that PPO performs
poorly compared to the baseline regardless of training time.
Specifically, we observe ∼ 47 more MegaWatts when using
the naı̈ve baseline compared to PPO trained for 50,000 time
steps. A potential reason for this is a single agent is not
sufficient to control all the turbines, thus our system does
learn useful information while training.

C. Analysis with Respect to Training Time

We compare the effect of training PPO for 25,000 time
steps (i.e., PPO 25K) and training for 50,000 time steps
(i.e., PPO 50K). Both PPO implementations have the same
hyperparameters and use the same optimizer, with training
time being the only dependent variable.

When examining the performance of PPO in Table II,
we observe a higher mean episode reward (MER) when
training for a longer amount of time. Specifically, we observe
a 2.13KW increase when training for 50,000 time steps
compared to training for 25,000 time steps. This matches
our intuition that by allowing RL agents to gain more
experience within an environment, algorithms are able to
generalize better and extract a higher reward. However,
despite doubling the amount of training steps, we only
observe a small increase in the average reward in addition to
both models drastically under performing compared to both
baseline approaches.

Next we examine trends when evaluating PPO for 5
episodes, demonstrated in Figure 2. First we observe that
PPO 25K only outperforms PPO 50K in one episode, pro-
ducing roughly 4 more mega-wattss (MWs) than PPO 50K
at episode 1. For all other episodes, PPO 50K consistently
generates a higher reward than PPO 50K, indicating that the
additional training time is beneficial. We also empirically
observe in Figure 2 that the PPO 50k has less variation in
it’s rewards, which matches our observations in Figure 3.

Finally, we examine the distribution of episode rewards
during validation for both PPO algorithms. In Figure 3, we
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Method Naı̈ve Baseline Control Baseline QMIX* PPO 25K PPO 50K

MER (MW) 53.88 43.91 25885.29 4.04 6.17

TABLE II: Mean Episode Reward (MER) across 5 episodes
measured in MWs. When observing stable algorithms (i.e.,
PPO), we observe a higher MER when training for longer.
*We observe a significantly higher reward when using QMIX
but attribute this to bugs in the RLLIB implementation. The
naive baseline outperforms all other algorithms.

observe a tighter distribution when training for a longer
amount of time (i.e., 50,000 time steps) compared to training
for a shorter amount of time. Moreover, we observe a slightly
lower upper bound on the episode reward when training for
25,000 time steps ( 8.8¡W) whereas we observe a higher
upper bound ( 9.2 giga-watts (GW)) when training for longer.
We hypothesize the extra training time allows for the model
to learn a slightly better policy, despite both algorithms
learned approximately uniform policies as shown in Figure 4.
The tighter distribution potentially indicates that even if a
model is not learning useful information, training for longer
can help fit a tighter distribution within episodic rewards.

D. Analysis with Respect to First Action

We now analyze the first action taken by each PPO model
over 1000 first actions within the same environment, shown
in Figure 4. Overall, we observe approximately uniform
distributions between both models. There is slight variation
in the actions chosen, but a single action does not appear to
dominate in either scenario. This provides further evidence
that our PPO models do not learn useful information during
training and instead learn a uniform random policy. This is
a potential reason for the poor performance compared to our
baseline control methods. We hypothesize that a non-uniform
policy would yield significantly better results, potentially
closing the gap between RL methods and our baseline.

VI. CONCLUSION

In this work we present initial findings for the use of RL in
wind-farm environments for the purposes of power tracking
with both yaw angle and axial induction factor.
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