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Abstract— Estimating the levelized cost of energy (LCOE) of
a wind turbine is useful for performing a cost-benefit analysis of
potential designs. The power consumed by blade-pitch actuation
is an often neglected, but nontrivial factor in LCOE estimation.
The peak power consumption determines the required rating of
the actuation motors and the mean power consumption impacts
the net annual energy production (nAEP) of the turbine. The
closed-loop blade-pitch actuation and the power consumed by
its motors are complex functions of the wind field disturbance
and internal turbine states. They can only be predicted well
with reasonably high-fidelity and computationally expensive
simulations or field tests. We present an alternative approach
to modeling these signals using the Sparse Identification of
Nonlinear Dynamics with Control (SINDyC) methodology. It
is computationally tractable to generate these models for large
datasets and to efficiently evaluate the required pitching power
for a given wind field. Furthermore, the models provide intu-
ition as to how the wind disturbance and blade pitch contribute
to the signal dynamics. By generating a closed-form dynamic
state equation for the blade-pitch actuation and an algebraic
equation for the blade-pitch motor power, we can efficiently
predict the mean and maximum power required for a given
turbulent wind field and turbine design. The model is trained
and validated using data generated from the open-source aero-
servo-hydro-elastic wind turbine simulation tool OpenFAST.

I. INTRODUCTION

Wind energy, produced primarily by horizontal axis wind
turbines (HAWTs) offers enormous potential for renewable
energy generation as part of the clean energy transition
necessary to fulfill demand for increasing quantities of af-
fordable and reliable energy with lower associated carbon
emissions. The widespread and accelerated installation of
wind farms is strongly influenced by the levelized cost of
energy (LCOE) metric, which quantifies the cost of energy
per kilowatt-hour (kWh) produced by a wind farm.

The LCOE contribution of a single turbine in a wind
farm over the course of a year is the sum of the annual
costs associated with that turbine divided by the net annual
energy production (nAEP). nAEP is defined as the difference
between the annual energy production (AEP) and the energy
consumed by the actuators. In the current study, we neglect
the energy consumed by all actuators except for the blade-
pitch actuation system and denote that annual energy con-
sumption as ∆AEβ . Extensions to include the other actuators
is a subject of future work. The LCOE is defined as:

LCOE =
CAPEX · FCR+OPEX

AEP −∆AEβ
(1)
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where CAPEX [$/kW] is the capital expenditure, FCR
[%/year] is the fixed charge rate that annualizes the upfront
project capital cost, OPEX [$/kW-year] is the annualized
operation and maintenance expenditure [1], AEP [kW-year]
is the total energy produced by the wind turbine over the
course of a year and ∆AEβ [kW-year] is the total energy
consumed by the blade pitch actuation motors over the same
time period.

We consider a variable-speed HAWT [2] with collective
pitch control, whereby identical blade-pitch signal commands
are issued to each blade. This allows us to reduce our analysis
to the study of a single blade’s pitching behavior. However,
the modeling procedure could easily be extended to consider
the case of individual pitch control (IPC), where each blade
receives a distinct pitching command from the controller.

The control scheme of a wind turbine is typically divided
into four distinct control regions for different wind speeds
as shown in Fig. 1. Of interest in this work is Region 3
(R3), where the wind speed is greater than the rated value.
In R3, the blade pitch controller is activated to regulate the
generator speed to its rated value and the generator torque
is controlled to maintain a constant power output [3].

The closed-loop HAWT model we consider is based on
a particular iteration of the Segmented Ultralight Morphing
Rotor (SUMR) wind turbine model [4]. Our goal is to model
the closed-loop dynamics of the blade-pitch angle β, and the
power Pβ that its motors consume in R3.

Fig. 1: Wind turbine operating regions, including the steady-
state blade-pitch angle β [deg] (blue), generator speed ωg

[rpm] (orange), and generator torque τg [MN·m] (green)
curves for the SUMR wind turbine

Blade-pitch actuation involves adjusting the angle of attack
of each of the blades as a means of controlling wind turbine
rotational speed and fatigue loading. The actuation system
at each blade is powered by a motor that consumes a time-
varying power Pβ(k), where k denotes the discrete time-
step. Of particular interest are the values of mean, P̄β , and
peak, P ⋆

β , power consumed by the motors over a given time
period. P̄β serves as a predictor of the power consumption



during normal wind conditions and thus determines ∆AEβ

in (1) and the average fatigue loads we can expect on the
turbine components. P ⋆

β determines what power rating the
motors require for extreme wind conditions and the ultimate
loads we can expect, and thus contributes to CAPEX in
(1). The relative cost of the wind turbine pitching system is
estimated to be as high as 5.5% [5], and the motor power
rating significantly affects the investment cost of the turbine.

Machine learning (ML) techniques have been applied to
wind energy systems with a variety of objectives. Stetco et al.
present a review of ML methods for wind turbine condition
monitoring for prognosis, whereby a predictor model for
failures in turbine components is learned from data [6].
Clifton et al. [7] and Pei and Li [8] employ ML techniques
to learn the power curve of a wind turbine (i.e. the power
generated for different mean wind speeds) from data. Neither
of the aforementioned works consider the power consumed
by wind turbine actuators and the resulting impact on the
net power generated by a wind turbine. Kane presents and
validates a ML-based controller for IPC of floating offshore
wind turbines [9]. It is not, however, applicable to learning
a pre-defined control law for an operational wind turbine.

The cost of predicting the power consumed by a blade-
pitch actuation system for a given wind-field time-series
using medium- to high-fidelity simulation tools such as
OpenFAST is computationally expensive, requiring several
hours for a 10-minute simulation. Such an approach is not
conducive to efficient optimization of potential new turbine
designs. To address this challenge, this work develops a
deterministic, closed-form model of the power consumed by
the blade-pitch actuation as a function of the wind field. Such
a model allows us to swiftly generate a time-series of Pβ(k)
for a given turbine design and wind field and thus evaluate
the mean and peak power required by the actuation motors
for the particular wind case and turbine design. The main
contributions of this paper are as follows:

• Development of a dynamic model of the blade-pitch
actuation as a function of the wind disturbance. based
on the Sparse Identification of Nonlinear Dynamics with
Control (SINDyC) methodology

• Development of an algebraic model of the power con-
sumed by the blade-pitch actuation system based on the
SINDyC methodology.

• Validation of the above two models using data from
OpenFAST simulations.

The rest of the paper is organized as follows. Section II
describes the SINDyC modeling approach implemented.
Section III describes the datasets and modeling parameters
used for training and validation of the model. Section IV
presents the results of the models generated and assesses
their accuracy. Section V discusses the insights gained from
the results and provides suggestions for future work.

II. METHODOLOGY
A. Modeling

We develop two models in this work: a) a dynamic state
equation for the discrete-time closed-loop blade-pitch control

input β(k) as a function of the previous filtered horizontal
wind speed ûx(k− 1) and its first-derivative ˙̂ux(k− 1), and
b) an algebraic equation for the power Pβ(k) consumed by
the blade-pitch motor as a function of the blade-pitch angle
β(k) and its derivatives β̇(k) and β̈(k), where k represents
the discrete time step, see Fig. 2.

Fig. 2: Block Diagram of Model Structure

1) Closed-Loop Blade-Pitch Dynamics, β: In this work,
we employ Discrete-Time SINDyC [10] to model the dynam-
ics of the blade-pitch actuation, β. SINDyC is essentially
a regularized linear regression method for identifying the
dynamics of nonlinear systems with control inputs from mea-
sured data and relies on the premise that most real systems
will have relatively few dominant terms in their underlying
governing equations. It is thus a sparsity-promoting method
in that the trade-off between accuracy and parsimony of the
model is integrated into the solution and controlled by a
thresholding parameter. Given a large library of candidate
functions, the algorithm selects relatively few to represent
the dynamics of the system.

To formulate the SINDyC problem, we measure K snap-
shots of the state x ∈ Rn and the control input u ∈ Rm in
time and arrange these into two matrices X ∈ Rn×K and
U ∈ Rm×K . We also construct the subsequent state matrix
X+ via direct measurement. The full set of measurement
data matrices are:

X = [x1 x2 . . . xK ] (2a)

X+ = [x+
1 x+

2 . . . x+
K ] (2b)

U = [u1 u2 . . . uK ] (2c)

The library of candidate nonlinear functions Θ(X,U) ∈
RN×K is also constructed, where each row corresponds to
one of N nonlinear candidate functions of x terms, u terms,
and cross-terms in x and u; and each column corresponds
to the evaluation of the library of functions at a particular
snapshot in time.

SINDyC assumes the dynamical system to be a linear
combination of the candidate functions:

X+ = ζΘ(X,U) (3)

where ζ ∈ Rn×N is a matrix of coefficients representing
the relative contribution of each candidate function to the
model, where the ith row gives the coefficients modeling the
dynamics of the ith state. Reformulating this notation to a
per-state basis, the N coefficients corresponding to the ith
state in the vector x are given by ζi ∈ R1×N .



To find the coefficients, ζi, best describing the state
dynamics for a given library of candidate functions, we can
solve the Sparse Relaxed Regularized Regression (SR3) [11]
optimization problem for each state xi. SR3 is a sparsity-
promoting regression methodology applicable to SINDyC
that has been shown to:

a) be superior with respect to modeling errors and problem
conditioning when compared to non-relaxed counter-
parts (e.g. LASSO [12]),

b) facilitate extremely fast optimization algorithms for both
convex and non-convex problems, and

c) apply well to composite regularization functions.

In SR3, an auxiliary variable wi is forced to be close to a
transformation of the coefficients ζi, Ciζ̂

T
i , by introducing

the normed error into the objective function. Solving for the
dynamics of the ith state, we then have:

ζi = argmin
ζ̂i,wi

1

2
∥X+

i − ζ̂iΘi(X,U)∥22 + λL(wi)

+
1

2ν
∥Ciζ̂

T
i − wi∥22

(4)

where X+
i ∈ R1×K represents the rows corresponding to

the ith state, ζi ∈ R1×N is the ith row of ζ, L(·) is
the regularization function, Ci ∈ R1×N is the relaxation
matrix, λ ∈ R+ is the threshold parameter that controls the
trade-off between model accuracy and parsimony, and ν is
the relaxation parameter that controls the trade-off between
regularity of the problem and proximity of the solution to
the true optimal. The purpose of the λL(wi) term is then to
promote sparsity in the variable, wi that is forced to be close
to a transformation of the coefficients Ciζ̂

T
i .

2) Blade-Pitch Motor Power, Pβ: The power Pβ con-
sumed by the blade-pitch motor is an algebraic function of
the blade-pitch dynamics and the turbine specifications at
each time step. We employ a static variation of SINDyC to
model Pβ as a function of the blade pitch and its first two
derivatives for a given turbine model. By ‘static’, we are
assuming that Pβ has no associated dynamics, and that its
value at time-step k is a function of β̇(k) and β̈(k).

From the raw blade-pitch time-series data, the first and
second blade-pitch derivatives, β̇(k) and β̈(k), respectively,
are computed via the second-order finite-difference method.
The ‘true’ power consumed by the blade-pitch motor is not
provided directly by the data and is computed as Pβ = Mβ̇,
where M [kN·m] is the blade torsional moment. While this
may result in negative values of the power, using this form of
Pβ in the training data is found to result in significantly more
accurate models when compared to those generated from the
absolute values.

We construct the matrices X and U as in (2) and the
library of candidate nonlinear functions Θ(X,U). Linear
regression assumes the algebraic relation to be a linear
combination of the candidate functions:

X = ζΘ(X,U) (5)

Again, we use the SR3 method to find a solution to (5):

ζi = argmin
ζ̂i

1

2
∥Xi − ζ̂iΘi(X,U)∥22 + λL(wi)

+
1

2ν
∥Ciζ̂

T
i − wi∥22

(6)

B. Time-Series & Library Ensembling

To improve SINDyC performance in this work, we employ
time-series ensembling, which generates multiple models
for subsets of the training data X and U , and library
ensembling, which generates multiple models for subsets of
the candidate function library. We then compute the median
of the coefficients for each candidate function over all models
generated for the final model. A secondary advantage of
this approach is that we can inspect the variance of the
coefficients corresponding to different library functions. This
tells us how robust those coefficients are to different sets
of measurements. We compute the normalized variance for
each coefficient by dividing the variance of the coefficients
generated for each model by the mean value.

C. Maximum-Absolute Scaling

Each candidate library term formed from the training data,
Θi(X,U) for the ith state being modeled, is scaled using
the maximum-absolute method such that its values have a
range of [−1, 1], which improves the conditioning of the
optimization problem (4). The scaling factors used are the
maximum-absolute values for each candidate library term
over all the training data, and are also used to scale test data
inputs when we simulate the learned model.

D. Defining Candidate Library Functions

Given intuition about the control schemes and dynamics
describing the behaviour of a closed-loop wind turbine
system, we can try to derive suitable candidate functions
for our SINDyC model. The candidate functions map the
features listed in Table I to terms that may be included in the
final model. Distinct candidate function libraries are derived
to model both the dynamic blade pitch and algebraic blade
pitch motor power functions.

TABLE I: Model Features

Feature Description Unit
β Blade 1 pitch angle rad
β̇ First time-derivative of β rad/s
β̈ Second time-derivative of β rad/s2
ûx − ūx Deviation of filtered horizontal wind speed

at hub-height from mean value m/s
˙̂ux First time-derivative of ûx m/s2
Pβ Power used by the Blade 1 pitch motor MW

1) Blade Pitch: We assume that the dynamics of β, for
fixed turbine specifications, are described by a function of
some of the features given in Table I and can be expressed as
β(k) = f(ûx(k−1)−ūx, ˙̂ux(k−1)). We consider the filtered
wind speed, ûx, as the raw measurement data contains a high
degree of noise. To this end, we filter the data with a second-
order low-pass filter. For our set of candidate functions for
the β model, we consider all possible polynomials, including



interaction between any two different variables, of degree 3
of specific variables and a constant term:

apbq ∀a, b ∈ {ûx − ūx, ˙̂ux(k)}; p, q ∈ {0, 1, 2, 3} (7)

The current blade-pitch value, β(k), is not included in this
model, as it is found to be considerably more likely to be
unstable and to generate unbounded values when used in
simulations.

2) Blade-Pitch Motor Power: The power consumed by
the blade-pitch motor can be directly computed as Pβ =
Mβ̇, where M [kN·m] is the blade torsional moment and β̇
[rad/s] is the first time derivative of the blade-pitch signal.
We assume that, for fixed turbine specifications, Pβ can be
modeled as an algebraic function of the first two derivatives
of the blade-pitch as Pβ(k) = f(β̇(k), β̈(k)), as the blade
torsional moment, M , may also be a function of β̇ and β̈. For
the Pβ candidate function library, we consider all possible
polynomials up to degree of 2 of β̇, β̈, where β̇ must be
included in every feature:

{β̇, β̇2, β̇β̈} (8)

III. VALIDATION SETUP

To generate training and test datasets, we run closed-loop
wind-turbine simulations on the SUMR [4] turbine model for
700 seconds with a sampling rate of 80 Hz, with turbulent
wind profiles generated for 100 different seeds with an
Extreme Turbulence Model (ETM) and a mean wind speed of
14 m/s using OpenFAST [13]. SUMR is a 3-bladed, 25 MW
turbine with a radius of 171.75 m, rated generator speed of
5.2579 rpm and rated wind speed of 10 m/s. The horizontal
wind speed at hub-height signal, ux, is filtered with a second-
order low-pass filter to generate the filtered time-series, ûx.
The first 62.5 seconds of data are discarded from each dataset
to exclude the initial transient response, leaving 100 time-
series datasets with a duration of 637.5 seconds (or, 5100000
data points). We use 80 of the datasets as training datasets
and the remaining 20 as test datasets.

We choose C = I as the relaxation matrix, which forces
the auxiliary variable to be close to the coefficients, and
L(·) = ℓ0 as the regularization function, which penalizes
the number of nonzero coefficients. For the time-series
ensembling, we generate 20 models with sub-samples of
size equal to that of a single dataset. The results are that
on average, approximately 60% of the total training data is
seen by at least one of these generated models. For the library
ensembling, we generate 20 models for each of the above
models, where 2 of the candidate functions are randomly
selected to exclude from the library for each model. We do
not consider library ensembling for the Pβ model, since the
candidate function library consists of only a few functions.

We conduct a parameter sweep by generating models with
the SR3 algorithm for different values of the thresholding
parameter, λ, and the relaxation parameter, ν, for the values
[10−8, 10−6, 10−4, 10−2, 100].

To evaluate the accuracy of model predictions compared
to true data, we use the R2 = 1−

∑
i (yi−fi)

2∑
i (yi−ȳ)2

metric, where

Fig. 3: R2 vs. λ, ν for β Model (top) and Pβ Model (bottom),
where each black star denotes the maximum value of R2

found over all parameter sets.

ȳ is the mean of the true data, yi is the ith true data point
and fi is the ith modeled data point.

We also evaluate the relative error between the true and
predicted values of the mean, P̄β , and peak, P ⋆

β , values of the
blade-pitch motor power for each test time-series dataset as
ϵj =

fj−yj

yj
× 100%, where yj is the true mean/peak value

for the jth test dataset and fj is the corresponding value
computed from the model for the same dataset.

Codes adapted from the open-source Python library,
pySINDy [14], are used to generate the SINDyC models
discussed, and are available on GitHub [15].

IV. MODELING RESULTS

A. Parameter Sweep

For each parameter set of λ and ν, models are generated
for β and Pβ and the R2 metric is computed for each test
dataset, for each of these parameterized models. Fig. 3 shows
how the median of these R2 scores over all test datasets
varies with λ and ν for each dynamical model. We see
that, in the case of the β model results, of the parameters
tested, values of λ = 10−8, ν = 10−4 achieve the greatest
median score over all test datasets. In the case of the Pβ

model, values of λ = 10−6, ν = 10−6 achieve the greatest
median score. We can also see that higher values of λ, which
will result in less terms included in the model, result in
significantly poorer predictions for both models.

TABLE II: β SINDyC Candidate Function Ensemble Coef-
ficient Median (me,ζi ) and Normalized Variance (σ̂2

e,ζi
)

β(k + 1) Terms me,ζi σ̂2
e,ζi

1 1.958e-01 3.614e-02
(ûx − ūx) 1.267e-01 2.425e-02
(ûx − ūx)2 -5.048e-02 1.002e+00
(ûx − ūx)3 3.518e-02 3.044e-01
˙̂ux -6.765e-03 3.080e-03
(ûx − ūx) ˙̂ux 5.197e-03 2.571e-03
(ûx − ūx)2 ˙̂ux -4.979e-03 2.708e-02
˙̂u3
x -3.672e-03 3.680e-02

Pβ(k) Terms me,ζi σ̂2
e,ζi

β̇ -3.301e-02 3.567e-04
β̇2 -2.023e-02 1.774e-03
β̇β̈ 1.481e-03 1.431e-03



Fig. 4: True (purple, solid) & Modeled (green, dashed) Time-
Series Simulation of a Test Dataset for the β(k), λ =
10−8, ν = 10−4 (top) and Pβ(k), λ = 10−4, ν = 10−8

(bottom) Models

B. SINDyC Candidate Function Coefficients

Table II shows the relative ensemble median values, me,ζi
,

of the SINDyC coefficients. These values indicate how
much each candidate function contributes to the models. The
normalized variance, σ̂2

e,ζi
, of the ensemble coefficients (the

variance normalized by the mean) tells us how robust these
coefficients are to models trained with slightly different input
data or candidate function libraries. Note that since we apply
scaling to the candidate function terms, it is valid to compare
these coefficients for different terms. The candidate functions
are listed in order of decreasing median contribution. We see
that, for the β model, the terms including the deviation of
the filtered wind speed from its mean value, ûx − ūx, have
relatively high median but also high normalized variance
values in the case of the terms raised to powers. This suggests
that such terms contribute significantly to the model, but that
its value may vary significantly for different training data and
candidate functions. As for the Pβ model, it seems that the
β̇ and β̇2 terms contribute the greatest to the model. Their
corresponding low variance values suggest that we can rely
on these coefficients to make predictions on new data.

C. Time-Series Match

Fig. 4 shows the true time-series of β and Pβ from a
selected test dataset compared to those generated by the
respective models. Note that Pβ is plotted over a subset of the
time-series such that the fluctuations are visible. Variations
in β and Pβ over time seem to be captured well by both
models. Each SINDyC simulation of 700 seconds requires
20 seconds of CPU time to run, compared to approximately
200 minutes for the equivalent OpenFAST simulation.

From this study, we have learned that the magnitude of
Pβ , which is of the order of 0.01 MW, is virtually negligible
relative to the rated power of the turbine at 25 MW. The
consequence of this is that the contribution of ∆AEβ , which
is computed from the mean power P̄β consumed, to LCOE
is not very significant. However, the peak power P ⋆

β is

Fig. 5: R2 for each Test Dataset for the β(k), λ = 10−8, ν =
10−4 (green, left axis) and Pβ(k), λ = 10−4, ν = 10−8

(purple, right axis) Models

Fig. 6: Relative Error, ϵ, between True & Modeled Values of
the mean, P̄β (green), and peak, P ⋆

β (purple) power for all
Test Datasets, λ = 10−4, ν = 10−8

nevertheless an important factor in the overall cost of the
system due to its contribution to the required rating of the
actuation motors and thus to the CAPEX in Eqn. (1).

D. R2 Evaluation

Fig. 5 shows R2 for the β and Pβ models, for the true
time-series values of each test dataset compared to those
generated by the respective models. Clearly there are some
outlying datasets for the β model, namely dataset a and c,
that perform poorly relative to others, but generally the score
hovers just above 0.4 in the case of the β model (green bars)
and 0.9 in the case of the Pβ model (purple bars).

Fig. 6 compares the true and modeled mean, P̄β (green),
and peak, P ⋆

β (purple), blade-pitch motor power, as measured
over each test dataset for the λ = 10−4, ν = 10−8 case.
While the predictions of P̄β err up to ±100% in some cases,
the prediction errors for P ⋆

β are within [−40, 4]% over all
datasets, with a mean error of approximately 25%. Given
the overall very small values of mean power, the estimation
errors in mean power are not of concern.

V. CONCLUSIONS AND FUTURE WORK

The SINDyC models generated in this work produce
satisfactory predictions when compared with the data from
OpenFAST simulations. The modeled values of the peak
blade-pitch motor power P ⋆

β generally match the simulated
values within 25%. The general trends of the modeled β and
Pβ values seem to correspond particularly well to those in
the time-series simulations. Once the computational effort of
running OpenFAST simulations to generate training data has
been completed, the generated models can be used in iterative
optimization algorithms with negligible computational over-
head. The median values found by the ensembling method
are indicative of the dominant terms in each case and the



normalized variance reflects the reliability of these values
across different datasets and candidate function libraries.

Results could likely be improved by employing a larger
training dataset, by including a more formal forward or
backward feature selection process to find the best subset
of candidate library functions, or by optimizing the tuning
parameters, λ and ν, using a cross-validation approach.
Additionally, more complex, albeit possibly more accurate
models could be developed using auto-regressive inputs (i.e.
from previous time steps).

As for future work, ultimately we would like to generate a
model of the blade-pitch motor power consumption which is
purely a function of the turbine specifications, the control
objectives which dictate the blade-pitch actuation of that
turbine, and the characteristics of the wind disturbance
expected, such that we could efficiently compute the ap-
proximate power consumed and peak power required by
the blade pitch actuation system over a given period of
time and therefore estimate the impact of this actuation on
the LCOE of the total wind farm without needing to run
expensive simulations. Next steps would be to extend the
input space with the set of turbine parameters (e.g. the rotor
diameter, the tower height, the number of blades, the rated
generator power, the rated wind speed, the rated generator
speed, etc.), characteristics of the wind field (e.g. different
mean wind speeds, directions, turbulence intensities, wind
shear values, etc.) and the control objectives that determine
how the blade-pitch actuation system behaves. Future work
also includes generating a similar model for the costs of
replacing the bearings of the blade-pitch actuation system as
well as for IPC and yaw angle actuation and the associated
power consumption.
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