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Abstract
Large wind turbines experience amplified asymmetrical loads at particular harmonics of the rotational
frequency. Individual pitch control (IPC) has emerged as a potential controls solution to this problem.
H∞ control, which facilitates robust, multivariable controller synthesis in the frequency domain, is a
candidate approach to IPC design for several reasons. Firstly, the objectives of asymmetrical load attenuation
are best described in the frequency domain. Secondly, the IPC control signals and loads in orthogonal
directions are coupled, which necessitates a multivariable controller approach. Thirdly, H∞ synthesis is
a method that can explicitly impose constraints on the robustness of the closed-loop system. A downside
of IPC is the significant increase in blade-pitch travel incurred, which introduces additional loading on the
blade-pitch bearings over time. We investigate strategies to constrain the blade-pitch travel in the controller
tuning procedure. A comprehensive study is thus presented for a range of H∞-synthesized IPCs to attenuate
asymmetrical loads on large rotors at harmonics of the rotational frequency while mitigating blade-pitch
travel. All developed controllers are validated and compared using a 25 MW fixed-bottom offshore wind
turbine model via linear analysis of the robustness of the closed-loop system to input and output disturbances
and nonlinear analysis via the study of structural load power spectra, damage-equivalent loads (DEL), and
the actuator duty cycle (ADC) of the blade-pitch actuator.
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1 INTRODUCTION

Wind energy offers enormous potential for renewable energy generation as part of the clean energy transition necessary to
reduce the generation of damaging carbon emissions while fulfilling demand for increasing quantities of affordable and reliable
energy. The power that can be extracted from a wind turbine scales with the square of the rotor radius (the combined system
of the hub and blades). As a consequence of this, there is a strong motivation to produce wind turbines with rotors that span
a greater area. A critical limiting factor is the cost of materials. Wind turbine designers are thus faced with a challenge: to
produce longer blades with less material. This results in long, slender, and lightweight blades. From a controls perspective,
this a) introduces flexible bending modes and b) incurs asymmetrical loads over the significant area spanned by the rotor as a
result of the variation in incoming wind. This asymmetrical loading has many contributing sources, including deterministic
contributions such as gravity, wind shear, wind veer, tower shadow, yaw/tilt misalignment, and stochastic contributions such as
atmospheric turbulence and eddies.1 The life-cycle of the turbines can be significantly impacted if these loads are not actively
alleviated via intentionally-designed control.

Loads experienced by the rotating components (e.g. the blades) of a wind turbine arise at harmonic frequencies of 1P, 2P,
3P, 4P (once, twice, three times, four times per revolution) etc. For three-bladed turbines, such as the one under investigation
in this work, the loads incurred on the non-rotating components (e.g. the tower) contain harmonics at multiples of three times
the rotational frequency i.e. 3P, 6P etc.2 The "missing harmonics" present on the rotating components appear at their adjacent
frequency multiple of 3P on the non-rotating components, so 1P in the rotating domain is transferred to 0P (i.e. zero-frequency
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or constant), 2P and 4P to 3P, etc.3 It is therefore possible to project loads experienced by rotating components from the rotating
domain (consisting of coordinates for blades 1, 2, and 3) onto a non-rotating domain (consisting of coordinates for the average
value c over the blades, loads that contribute to a tilting moment d on the wind turbine structure, and loads that contribute to a
yawing moment q on the wind turbine structure) via the Multi-Blade Coordinate (MBC)-transformation, and subsequently to
mitigate these transformed loads.4

We consider a variable-speed horizontal axis wind turbine (HAWT) (see references for a comprehensive description of HAWT
control systems).5 The control scheme of a wind turbine is typically divided into distinct control regions for different wind
speeds as shown in Fig. 1. Of interest in this work is region 3 (R3), where the wind speed is greater than the rated value, also
known as the above-rated or full-load region. In above-rated conditions, the blade pitch controller is activated to regulate the
generator speed to its rated value and the generator torque is controlled to maintain a constant power output.6

F I G U R E 1 Operating regions and steady-state values of the blade-pitch angle β [deg], generator speed ωg [rpm], and
generator torque τg [MN·m] for the SUMR wind turbine.7 Since the gearbox ratio for this turbine model is 1, the rotor speed
and generator speed are equivalent.

Blade-pitch control is primarily used for collective pitch control (CPC), whereby the rotor speed of a wind turbine is regulated
to its rated value in above-rated wind conditions by varying the angle of attack of all three blades identically. The objective of
individual pitch control (IPC) is to alleviate the asymmetrical loads by superimposing distinct periodic signals onto the collective
blade pitch command for each of the blades. Given measurements or estimations of asymmetrical loads (e.g. the blade-root
bending moments, tower-top tilting/yawing moments), IPC generates blade pitch signals for each blade of the turbine (see Fig. 2
for a depiction of the blade-pitch control system). Bossanyi et al. develop and validate linear-quadratic-Guassian (LQG)-based and
proportional-integral (PI)-structured Coleman transform-based (also known as the MBC transform) IPC to suppress 0P loads.2,8,9

van Engelen proposes integrating additional integral and filtering feedback loops with higher-frequency Coleman transforms to
suppress higher harmonic loads with multiple Coleman-transform based controllers.10,11 A critical cost of implementing IPC is
the significant increase in blade-pitch travel, as quantified by the actuator duty cycle (ADC) metric, ADC = 1

T

∫ T
0

β̇(t)
β̇norm

dt, where

β̇(t) is the blade pitch angle rate of change and β̇norm, defined in Eqn. (1), is its user-specified maximum allowable value.12

β̇norm =
{

5◦/s β̇(t) ≥ 0
–4◦/s β̇(t) < 0

(1)

Both time-domain and frequency-domain control design approaches have been applied to IPC. Time-domain approaches
proposed include model predictive control (MPC),13,14,15,16 LQG control and linear-quadratic-regulators (LQRs).17,18,2,19

However, given that the performance specifications of IPC - namely to reduce loads at particular harmonics of the rotational
frequency - are best described in the frequency domain, frequency-based approaches have gained popularity in the literature.
Furthermore, the robustness of frequency-based approaches can be well described by robust stability margin metrics, for which
no time-domain equivalent exists. The most established implementation involves transforming rotating blade loads into the tilt
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F I G U R E 2 Simplified wind turbine system in control loop with collective pitch control (CPC) and individual pitch control
(IPC), where ω is the rotor speed [rad/s], M1,2,3 are the load signals in the rotating domain, Mc,d,q are the MBC-transformed loads
in the non-rotating domain, βc,d,q are the IPC signals in the non-rotating domain, and β1,2,3 are the IPC signals in the rotating
domain

and yaw coordinates via the MBC transformation, generating IPC signals in these transformed coordinates, and applying the
inverse MBC transformation to produce the IPC signals for each blade (see Fig. 2). The controller most often consists of two
single-input, single-output (SISO) PI controllers which directly attenuate the 0P transformed loads, corresponding to the 1P
rotating loads.

Alternative transformations have been employed for IPC. One such method is single- or individual-blade control, whereby
the non-inertial reference frame of each blade is compensated for by fictitious forces such that each blade can independently
regulate its own contribution to the asymmetrical loads experienced by the rotor in response to local blade measurements.20,21

Another method is the Clarke transform-based approach, in which the rotating loads are transformed into orthogonal axes that
are stationary with respect to the blades.3 Approaches that employ trailing edge flaps, rather than IPC, to attenuate asymmetrical
loads have also been studied.22,23,24,25

A limiting factor of the traditional SISO, MBC-transform based IPC controller is that it neglects the coupling between the tilt
and yaw components of the IPC controller inputs (load tracking error) and outputs (individual blade-pitch signals). It has been
shown that there does indeed exist a dynamic coupling between tilt and yaw signals in this feedback control.17,26 Lu et al. derive
the MBC transform of a simplified 3-bladed turbine model which establishes that there is a strong coupling between the tilt
and yaw components of the IPC inputs and outputs. An important corollary of this fact is that the traditional metrics of gain
and phase margin are unreliable measures of robustness for this coupled control system.27 This supports the development of
multivariable (i.e. multi-input, multi-output (MIMO)) controllers.

Several works have been published on robust multivariable control for IPC.28,29 Ossmann et al. design a multivariable linear
parameter-varying full-order H∞-synthesized controller to attenuate 0P and 3P loads in the non-rotating frame, and they verify
it on a real 2.5 MW wind turbine.30,31,32 Geyler and Caselitz design two independent, full-order H∞-synthesized controllers to
a) regulate the rotor speed and active damping of axial tower top oscillations with collective pitch control and b) to suppress the
0P loads induced by blade root bending moments with IPC, and they verify the controller on a 1.5 MW turbine model.26 Lu et
al. present a H∞-synthesized controller in which a simplified, rigid-blade, blade-decoupled plant is pre-compensated with the
series combination of a PI controller and 3P inverse notch filter to attenuate 0P and 3P loads.27 Vali et al. formulate a mixed
sensitivity H∞ optimization problem to solve for an optimal multivariable IPC controller that penalizes control effort using a
simplified blade model, and they validate their approach with a 10 MW turbine model.33

Challenges that remain in the development of H∞-synthesized IPCs are as follows:
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• Attenuation of blade-pitch travel is not explicitly considered in the tuning procedure or in the implementation of the
controller.

• To the best of the authors’ knowledge, all controllers presented to date are tested on wind turbine models of 10 MW
capacity or less, which is small relative the largest wind turbines (15 MW) currently commercially available and to even
larger wind turbines under development.

• Employing a simplified rigid blade model, as in the case of some previous works, may neglect critical resonant frequencies,
particularly for larger wind turbines that are more likely to have slender, flexible blades.27,33

In this work, we make the following contributions:

• Development of a framework to tune full-order multivariable H∞-synthesized IPCs to mitigate 0P and 3P loads in the
non-rotating (tilt and yaw) domain, corresponding to 1P and 2P/4P loads in the rotating (blade) domain; tuned for three
distinct objectives: robustness, load tracking error minimization, and ADC mitigation.

• Development and validation of three methods for mitigating ADC: a) by retuning the H∞ synthesized controller for
different gains of the weighting function on the control input, b) by using nonzero references for the loads that are used
as inputs to the controller, and c) by using finite saturation of the IPC blade-pitch signals in the rotating domain before
passing them to the wind turbine system.

• Linear and nonlinear analysis of all of the above controllers developed in terms of robust stability margins, ADC, DELs,
and frequency analysis.

2 MODELING

2.1 Plant Model for Nonlinear Simulations

We begin our section on modeling with a description of the nonlinear model used for the simulations, from which the reduced-
order linearized model used to tune the controllers is derived. The wind turbine model employed in this work, known as the
SUMR, is a 3-bladed, 25 MW turbine with a radius of 171.75 m, rated generator speed of 5.2579 rpm, and rated wind speed of
10 m/s.7 The reason for this choice of wind turbine model (as compared with more established benchmark models) is that given
its blade length, it is considered an extreme-scale wind turbine. Wind turbines that span larger rotor areas are more likely to
experience problematic asymmetrical loading due to greater differences in incident wind speeds over the greater rotor area. We
simulate this turbine using the open-source aero-servo-hydro-elastic wind turbine simulation tool OpenFAST.34 The model has
fourteen degrees-of-freedom, including the first and second flapwise blade modes (three for each blade), the first edgewise blade
mode (three for each blade), the generator motion, the first and second fore-aft tower bending modes and the first and second
side-to-side tower bending modes.

2.2 Multi-Blade Coordinate (MBC) Transformation

The states of a wind turbine model can be divided into two categories: those associated with rotating components (e.g. blade
moments) and those associated with non-rotating components (e.g. yaw bearing or tower base moments). Since there are turbine
degrees of freedom that vary with the value of the azimuth angle, θ (defined as the rotational displacement of the first blade from
the vertical upward position), when we linearize the model the dependency on θ remains, giving us a state-dependent model.
The MBC transformation allows us to convert the azimuth-dependent state-space linear model of a three-phase system, such as a
3-bladed wind turbine, into one that is time-invariant for system variations that oscillate three times per full revolution of the
azimuth angle. Non-rotating states are unchanged by the transformation, whereas triplets of rotating states associated with the
first, second, and third blade are transformed from the rotating domain ([w1, w2, w3]T ) to the collective, direct, and quadrature
components of the non-rotating domain ([wc, wd, wq]T ), where w is the quantity of interest. This tranformation is given by Eqn.
(2):
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T(θ) =
2
3

 1
2

1
2

1
2

cos (θ(t)) cos
(
θ(t) + 2

3π
)

cos
(
θ(t) + 4

3π
)

sin (θ(t)) sin
(
θ(t) + 2

3π
)

sin
(
θ(t) + 4

3π
)
 (2)

where θ(t) is defined as the counter-clockwise angle from the vertical upward position to the first blade, such that the non-rotating
signals [wc, wd, wq]T , can be computed from their rotating counterparts, [w1, w2, w3]T , for each value of θ as in Eqn. (3):

wc

wd

wq

 = T(θ)

w1

w2

w3

 (3)

Controllers developed for the MBC-transformed model will output control signals in the non-rotating domain, and so will
need to be transformed back into the rotating domain with the inverse MBC-transformation matrix given by Eqn. (4):

T(θ)–1 =

1 cos (θ) sin (θ)
1 cos

(
θ + 2

3π
)

sin
(
θ + 2

3π
)

1 cos
(
θ + 4

3π
)

sin
(
θ + 4

3π
)
 (4)

such that the rotating signals for each blade can be computed from their non-rotating counterparts as in Eqn. (5):

w1

w2

w3

 = T(θ)–1

wc

wd

wq

 (5)

2.3 Linear Parameter-Varying (LPV) Wind Turbine Model for Controller Tuning

H∞ control is a linear-control method and we therefore require linear models of our wind turbine system, G(s). To this end, we
compute linear state-space matrices of the nonlinear SUMR wind turbine model for a range of above-rated wind speeds (12 -
22 m/s in 0.5 m/s increments) for 36 equidistant azimuth values between 0◦ and 360◦.

The linearizations at each wind speed and azimuth angle result in a rotational linear parameter-varying (LPV) model which
depends on the azimuth angle, θ, and the mean horizontal wind speed, ūx. We transform the collection of azimuth-dependent
linearizations at each mean horizontal wind speed into the non-rotating domain with the MBC transformation matrix given by
Eqn. (2) (see references for details on the exact transformation of the state-space matrices).4 The azimuth-averaged linear models
at each wind speed are then linearly interpolated to form a LPV model which depends on mean horizontal wind speed alone, see
Eqns. 6. Finally, the model is reduced to consider only the relevant control inputs (the IPC commands in the non-rotating domain,
βd and βq), and measured outputs (the out-of-plane blade-root bending moments in the non-rotating domain, Md and Mq).

ẋ = A(p)x + B(p)u (6a)

y = C(p)x + D(p)u (6b)

where x is the state vector; y is the output vector, which consists of the out-of-plane blade-root bending moments, Md and Mq,
in the tilt (subscript d) and yaw (subscript q) coordinates, respectively; u is the control-input vector, which consists of the IPC
commands, βd and βq, in the tilt and yaw coordinates, respectively; and A(p), B(p), C(p), D(p) are the state-space matrices that
depend on the parameter vector, p, which in our case constitutes the low-pass filtered horizontal wind speed incident on the
turbine at hub-height. The frequency-response of the resulting MBC transformed and reduced linear wind turbine model is
shown in Fig. 3 for several wind speed linearizations.
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F I G U R E 3 Frequency-response of wind turbine model linearized at wind speeds 12, 14, 16, 18, 20, 22 m/s, where darker
lines correspond to higher wind speeds, and the vertical dashed black lines correspond to 2P, 3P, and 6P frequencies

3 ROBUST MULTIVARIABLE CONTROLLER DESIGN

3.1 Baseline Controller

IPC is commonly implemented by tuning a series interconnection of a notch filter and two PI controllers, which independently
regulate the d and q components of the out-of-plane blade-root bending moments Md and Mq, respectively. The purpose of the
notch filter in the three-bladed turbine case is to filter out the 3P content of the Md and Mq signals, such that the controller can
specifically target the 0P loads in the non-rotating domain without being excited by 3P load signals. The independent regulation
is what categorizes this as SISO control, as we effectively have two identical and independent PI controllers, one which reads
the tracking error of Md and generates βd, and another which reads the tracking error of Mq and generates βq. These signals are
then inverse-transformed into the rotational domain, as per Eqn. (4), and superimposed onto the collective pitch controller for
each blade. The gains of the baseline controller, K0, used in this work are manually tuned to attenuate 0P loads, but not to output
control signals aggressive enough to result in excessive ADC.

3.2 Mixed-Sensitivity H∞ Controller Synthesis

The objective of H∞ control is to find a stabilizing controller K that minimizes the H∞-norm of the specified transfer functions,
z
d , where z is a vector of weighted performance outputs and d is a vector of the disturbances on the closed-loop system. Both
vectors are multiplied by frequency-dependent weighting functions that penalize the values of the disturbances and performance
outputs to different degrees over specific frequency ranges. It is these weighting functions (W1, W2, We, and Wu in our case) that
are tuned to implement the desired performance specifications for the closed-loop system (see Fig. 4). We consider transfer
functions from disturbances at the plant input, d1, and disturbances at the plant output, d2, to performance outputs including the
weighted control input, zu, and weighted tracking error, ze. Given these definitions and the weighting functions, we can derive
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the generalized plant, P. We select these particular performance outputs because our objective is to attenuate the tracking error,
e, at particular harmonics of the rotor rotational speed, and to limit the steady-state value and bandwidth of the control action, u.
We choose to consider a disturbance at the input, d1, to impose robustness penalties with respect to uncertainties at the input,
and a disturbance at the output, d2, to include the effect of measurement noise and a reference added to the negative of the plant
output in the tuning procedure.

Intuitively, we can think of this optimization problem as minimizing the ‘peaks’ of various channels in the MIMO transfer
function between d and z. We define these transfer functions based on our desired performance criteria in the frequency domain.
Let F(P, K) be the lower linear fractional transformation (LFT) of the generalized plant, P, with the controller, K i.e. the
closed-loop transfer function from the disturbances, d, to the performance outputs, z, for a given P and K (see Fig. 4). The ratios
between the various weighting functions determine how the various closed-loop transfer functions are penalized in the H∞
optimization problem. In the case of optimal H∞ control, we find all stabilizing controllers, K, that minimize the H∞-norm of
F(P, K), given by Equation (7).29

A more attainable sub-optimal controller can be generated by finding all stabilizing controllers, K, such that ∥F(P, K)∥∞ < γ,
γ > γmin, where γ is a given upper threshold value for the H∞-norm of F(P, K). Mixed-sensitivity H∞ control is a closed-loop
shaping method, in which we shape one or more closed-loop transfer functions by minimizing the H∞ norm of the relevant
stacked transfer functions z

d .

∥F(P, K)∥∞ ..=

 max
d(t) ̸= 0∈L2

∥z(t)∥2
∥d(t)∥2

in the time domain

max
ω

σ(F(P, K)(jω)) in the frequency domain
(7)

where ∥x(t)∥2
..=

√∫∞
0

∑
i

∣∣xi(t)
∣∣2 dt is the 2-norm of the time-domain vector signal, x, and σ(F(P, K)(jω)) is the maximum

singular value of F(P, K) at frequency ω.
In this work we develop a full-order multivariable controller, K, that considers the measured and MBC-transformed out-of-

plane blade-root bending moments [Md, Mq]T as inputs, and outputs IPC commands in the non-rotating domain [βd,βq]T . The
full-order controller is a transfer function with the same number of states as the generalized plant, P, used for tuning (see Fig. 4),
which thus poses a convex optimization problem for H∞-synthesis.29

3.3 Frequency-Domain Performance Specifications

We can express the performance specifications of our controller as frequency-dependent constraints on one or more of the
following closed-loop transfer functions:

• The output sensitivity function, So = (I + GK)–1, is the closed-loop transfer function from the weighted output disturbances,
dw
2 , to the tracking error, e. This determines the disturbance rejection properties of the closed-loop system. In our case,

the upper bound of So controls how the deviation of [Md, Mq]T from their (nominally zero-valued) references, [M⋆
d , M⋆

q ]T ,
respond to measurement noise, nonzero references or disturbances on these load measurements due to the wind. In
particular, we want to ensure that the loads oscillating at 0P and 3P frequencies in the non-rotating domain are attenuated
with respect to wind disturbances that incur these asymmetrical loads.

• The input sensitivity function, Si = (I + KG)–1, is the closed-loop transfer function from the weighted input disturbance,
dw
1 , to the perturbed control action, ũ. This determines a) the size and bandwidth of the control input, which in our case

is the vector of IPC commands, [βd,βq]T , and b) the robust stability with respect to disturbances on the input and to
additive plant modeling uncertainty.29 The upper bound of KSo limits the magnitude of [βd,βq]T at zero-frequency and
the magnitude of [β̇d, β̇q]T in the higher-frequency range.

• The complementary input sensitivity function, Ti = KG(I + KG)–1, is the negative of the closed-loop transfer function from
the weighted input disturbance, dw

1 , to the unperturbed control action, u.
• The control sensitivity function, KSo = K(I + GK)–1, is the negative of the closed-loop transfer function from the weighted

output disturbance, dw
2 , to the unperturbed control action, u. Note that this is mathematically equivalent to SiK.

• The disturbance sensitivity function, GSi = G(I + KG)–1, is the closed-loop transfer function from the weighted input
disturbance, dw

1 to the unperturbed plant output, y. Note that this is mathematically equivalent to SoG.
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F I G U R E 4 Closed-Loop System of Generalized Plant, P, and Controller K

3.3.1 Generalized Plant

We derive the generalized plant shown in Fig. 4 by defining the disturbances, d1,d2, and the performance outputs zu, ze. The
disturbances represent external signals that can perturb internal ones, where d1 represents a disturbance on the control input and
d2 represents a reference signal, high-frequency measurement noise, or a low-frequency disturbance on the output. These are
weighted by input weighting functions W1 and W2 to generate dw

1 and dw
2 . The performance outputs are particular signals of

importance that are transformed by output weighting functions, where zu is the control input signal, u, weighted by Wu, and ze
is the tracking error, e, weighted by We. We also consider the input and output signals for the controller, e and u, respectively.
The linear wind turbine plant used, G, corresponds to the nonlinear model linearized at 16 m/s, MBC-transformed and averaged
over all azimuth angles (see Sec. 2). We can express the relationship between these signals with the generalized plant transfer
function P by finding the expressions for each of the performance outputs, e and u, in terms of the disturbances, d1 and d2:

u = K(W2d2 – G(W1d1 + u))

⇒ u = –TiW1d1 + KSoW2d2

(8a)

e = W2d2 – G(W1d1 + Ke)

⇒ e = –GSiW1d1 + SoW2d2

(8b)

We can then derive expressions for the weighted performance outputs as a function of the disturbances to get the LFT of the
generalized plant, F(P, K): [

zu
ze

]
=
[

Wu 0
0 We

] [
–Ti KSo

–GSi So

] [
W1 0
0 W2

]
︸ ︷︷ ︸

F(P,K)

[
d1

d2

]
(9)
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Including the controller K, inputs u, and tracking error e, we get the expression for the generalized plant P:zuze
e

 =

Wu 0 0
0 We 0
0 0 I

 0 0 I
–G I –G
–G I –G

W1 0 0
0 W2 0
0 0 I


︸ ︷︷ ︸

P

d1

d2

u

 (10)

Inserting the generalized plant P into a closed-loop system with the controller, we get the block diagram in Fig. 4.

3.3.2 Weighting Functions

The weighting functions in Fig. (4) are designed to set frequency-dependent penalties on the different transfer functions in the
optimization problem. Eqn. (9) shows which transfer functions are influenced by each.

We set the disturbance weighting functions as identity functions weighted by gains AW1 and AW2 :

W1 = AW1I2 (11a)

W2 = AW2I2 (11b)

We set the weighting function, We, associated with the tracking error to be a low-pass filter in series with an inverse notch
filter for the purposes of penalizing the 3P frequency ω3P, together with a gain AWe . The inverse of We serves as an upper bound
on the closed-loop transfer functions So and GSi and so the low-pass filter will penalize gains at the 0P frequency, and the inverse
notch filter will penalize gains at the 3P frequency. The constant g determines the gain of the filter at frequency ω3P and the
width of the filter correlates positively with the damping factor, ζ . We set the weighting function, Wu, associated with the control
inputs to be a high-pass filter together with a gain AWu . The inverse of Wu serves as an upper bound on the closed-loop transfer
functions Ti and KSo, and so the high-pass filter will penalize actuator activity at high frequencies.

Wu = AWu

1
ϵu

s + ωu
Mu

s + ωu
ϵu

I2, Mu = 2, ϵu = 0.001Mu,
ωu

Mu
= 0.75ω3P (12a)

We = AWe

1
Me

s + Meωe

s + ϵeωe

s2 + 2gζω3Ps + ω2
3P

s2 + 2ζω3Ps + ω2
3P

I2, Me = 5, ϵe = 0.05, ϵeωe = 0.005ω1P, ζ = 0.01, g = 15 (12b)

where 1
ϵu

controls the gain of Wu at high frequencies; ωu
Mu

is the breakpoint frequency of the high-pass filter in Wu and is chosen
to be a fraction of the 3P frequency, ω3P; 1

Me
controls the gain of We at low frequencies; and ϵeωe is the breakpoint frequency of

the low-pass filter in We and is chosen to be a small fraction of the 1P frequency, ω1P.
Note that it is not the absolute amplitudes of AW1 , AW2 , AWe , and AWu that matter, but rather their relative amplitudes. This

determines the relative significance of penalties on particular transfer functions. The precise best values depend on the goals of
the controller (i.e. whether disturbances on the output pose a greater threat to stability than disturbances on the input, or whether
we have reason to place a higher penalty on actuator activity than on tracking error) and also on the scaling used for the plant G.

We initially perform a sweep over the gains AW2 , AWe , and AWu (setting AW1 to a constant value of 1, since it is the ratios
between these gains that matter), generating a controller via H∞-synthesis and performing nonlinear simulations in OpenFAST
for each set, to find sets of weighting function gains that result in three distinct controllers: a) one that maximizes robustness,
Krob (in terms of the greatest multi-loop disk margin, see Sec. 4.3), b) one that minimizes actuator activity, Kadc (in terms of the
least ADC), and c) one that minimizes the load tracking error, Kerr (in terms of the least root mean-squared error (RMSE) of the
out-of-plane blade-root bending moment, M1). Table 1 shows the sets of weighting function gains found for each objective and
Fig. 5 compares the frequency response of the resulting weighting functions. Note that the set of gains resulting in controllers
with high robustness and controllers with low ADC are equivalent, and will henceforth be referred to as Kadc for brevity. The
results of this sweep in Table 1 and Fig. 5 suggest that a significantly greater weighting ought to be placed on the output
disturbance (greater AW2 ) and on the tracking error (greater AWe ) in order to mitigate load tracking error, as compared with the
goal of attenuating ADC. The middle plot of Fig. 5 illustrates the weighting placed on low frequencies (≈ 10–5 rad/s or lower)
and on the 3P frequency (1.6518 rad/s) by the low-pass filter and inverse-notch filter terms in We, respectively. In comparison, the
right plot of Fig. 5 illustrates the weighting placed on high frequencies (≈ 105 rad/s or higher) by the high-pass filter term in Wu.
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F I G U R E 5 Frequency-response of weighting functions for different weighting gains AW2 , AWe , AWu , where blue and red
lines correspond to the weights used for Kadc and Kerr, respectively. On the rightmost plot, the sweep of weighting function gains
AWu tested to mitigate ADC in all controllers is shown, where darker colors correspond to increasing values of AWu .

See Fig. 6 for a visualization of the variation in multi-loop disk margin, ADC, and M1 RMSE as individual weighting gains
are increased. Note that the robustness and tracking error tend to fall while ADC tends to rise with increased emphasis on
the tracking error (increased AWe ), and vice-versa with increased emphasis on the actuator activity (increased AWu ). Since the
fundamental gains of W1 and W2 (before amplification with AW1 and AW2 ) are low relative to those of We and Wu, relative changes
in AW2 do not play a significant role on the controller robustness, actuator activity, or tracking error.

F I G U R E 6 Normalized (between 0 and 1) multi-loop disk margin, ADC, and M1 RMSE values vs. variation in each of the
weighting gains AW2 , AWe , AWu , where all but one is held constant in each plot. Note that since the quantities are normalized for
each plot such that all three lines are visible, the effect of variation in different weighting function gains is not comparable here.
In reality, variation in the gains AWe and AWu relative to each other are much more significant.
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T A B L E 1 Sets of weighting function gains that result in the most robust controller, Krob, the controller incurring the least
ADC, Kadc, and the controller resulting in the least load tracking error, Kerr, compared to the baseline SISO PI controller, K0,
and the open-loop case (for which no closed-loop stability margins can be computed).

Case Description Multi-Loop Disk Margin [-] ADC [-] M1 RMSE [kNm]
Baseline Controller, K0 0.827 0.141 29868
Open-Loop (no IPC) - 0.026 33572
Robust Controller, Krob, AW1 = 1, AW2 = 0.01, AWe = 0.1, AWu = 10 1.912 0.028 33116
ADC Controller, Kadc, AW1 = 1, AW2 = 0.01, AWe = 0.1, AWu = 10 1.912 0.028 33116
Error Controller, Kerr , AW1 = 1, AW2 = 0.1, AWe = 10, AWu = 7.5 0.768 0.244 27596

3.4 Blade-Pitch Travel Attenuation

In order to limit the ADC of the blade-pitch actuation, we experiment with three methods: a) retuning the H∞-synthesized
controller for increasing control input weighting function gains, AWu , b) implementing a range of nonzero reference values for
the d component of the transformed blade-root bending moment, M⋆

d , and c) implementing a range of finite saturation values for
the IPC signals output from the controller and transformed back into the rotating domain, β1. All three approaches should result
in attenuation of the amplitude of the sinusoidal IPC commands and may have some negative impact on the robustness and/or
load attenuation properties of the controller.

The sweep of nonzero references M⋆
d tested are computed as percentages of the mean value of Md in the open-loop case, Md,

over all wind fields used in the simulations. The reasoning for only varying the d reference is due to the effect of wind shear,
because as a consequence d loads will generally be greater than q loads and the mean value of Md will generally be nonnegative
without control. This means that we can safely choose a nonnegative value for M⋆

d for the controller to steer the wind turbine
towards from above. See the upper plot of Fig. 7 for the reference values M⋆

d superimposed on a sample Md time-series.
The sweep of finite saturation values β1 are computed as percentages of the mean values of β1 in the closed-loop case for a

H∞-synthesized controller, β
1
, over all wind fields used in the simulations. Since the output for all three blades are identical

other than the 120◦ phase-shift between them, we can safely use the mean value from blade 1, β
1
, as a basis for saturating all

three blades. See the lower plot of Fig. 7 for the positive saturation values β1 superimposed on a sample βipc
1 time-series, where

βipc
1 is the inverse-MBC-transformed IPC signal for blade 1 before it is added to the CPC signal.

4 LINEAR ANALYSIS

4.1 Frequency Response of Tuned Controllers

Fig. 8a shows the frequency response of the H∞-synthesized controllers for the set of weighting function gains corresponding
to high robustness, Krob, and low ADC, Kadc, (recall that the best-performing set of weighting function gains for both are
found to be identical, see Sec. 3.3.2). Fig. 8b is the equivalent plot for the controllers tuned for the set of weighting function
gains corresponding to low M1 RMSE, Kerr. Each are plotted for the range of AWu values tested in the ‘retuning’ approach
to constraining ADC. The dotted blue line shows the frequency response of the baseline SISO PI controller for comparison.
Comparing the two plots, we can see that Kerr is a more aggressive controller than Kadc (i.e. produces higher gains) and also that
it presents a more significant peak at 3P. In comparison Kadc presents approximately equivalent peaks at 2P and 3P frequencies,
with another more rounded peak at 6P. Note that both controllers have off-diagonal-components from the Mq tracking error
to the βd control input as well as from the Md tracking error to the βq control input that are close in amplitude to the diagonal
components, reinforcing the motivation for such multivariable controllers.

4.2 Frequency Response of Closed-Loop Transfer Functions

Sec. 3.3 describes the closed-loop transfer functions that are shown in Eqn. (9) and for which ∥F(P, K)∥∞ is minimized in the
H∞ optimization problem. Fig. 9 visualizes the magnitude of the frequency response for the d – d channel of these transfer
functions multiplied by the associated input weighting function for the tuned Kadc and Kerr controllers which result in the lowest
ADC and lowest M1 RMSE in nonlinear simulations, respectively (solid lines). The dashed lines show the inverse penalty placed
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F I G U R E 7 Time-series plot of the reference values M⋆
d superimposed on a sample Md time-series (top) and positive

saturation values β1 superimposed on a sample βipc
1 time-series (bottom). Note that we have magnified the top plot such that the

reference values are visible.

on these transfer functions by the product of the inverse of the associated output weighting functions and minimum value of
∥F(P, K)∥∞ achieved by the H∞ optimization problem, γ. The bottom two plots, for the disturbance sensitivity GSi and the
output sensitivity So, show the open-loop (no IPC) equivalents (black dotted lines) that we can compare to. It is clear that the
GSi and So transfer functions are altered from the open-loop case for the Kadc controller at lower frequencies (≈ 0P) and 3P
frequencies, while the closed-loop and open-loop lines converge at higher frequencies. This tells us that it is these transfer
functions that are the limiting factor (i.e. the H∞-norm ‘peak’ that is minimized over all transfer functions) in the optimization
of Kadc. In contrast, GSi and So are almost unchanged from the open-loop case for Kerr, whereas Ti and KSo are notably different
compared to the Kadc equivalents. This suggests that it is these transfer functions that are the limiting factor in the tuning of Kerr.

4.3 Measures of Robustness

The purpose of a robust control method such as H∞-synthesis is to design a controller for a given system that meets stability
and performance requirements, even in the presence of uncertainties in the system model and/or exogenous disturbances. To this
end, we need a measure of how much perturbation to the gain and/or phase of the various loops of the system (d – d, d – q, q – d
or q – q, perturbed either individually or simultaneously) would result in instability of the closed-loop system. In this section we
define the metrics used in this work to describe these robust stability margins.

Loop-at-a-time disk margins can be visualized as a disk-shaped region of stability such that if any complex-valued perturbation
selected from this disk were applied to an individual channel in the closed-loop system, with all remaining loops closed, it would
remain stable. This addresses the question of simultaneous gain and phase variations neglected by classical gain/phase margins
and so is a more conservative measure, although it does not address the interaction of individual loops in a MIMO system.

Multi-loop disk margins describe the disk-shaped region of stability such that if any independent x number of complex-
valued perturbations were selected from this disk and applied to the x number of loop channels under consideration, with all
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(a) Controller tuned for high robustness and low ADC (equivalent): Krob, Kadc

(b) Controller tuned for low M1 RMSE, Kerr

F I G U R E 8 Frequency response for Kadc and Kerr, tuned with wind turbine model linearized at 16m/s, for varying gains of
Wu (black corresponding to the highest gain with lighter colors corresponding to decreasing gains). Note the peaks at the 2P, 3P
and 6P frequencies.
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(a) T (1,1)
i = zu,d

d1d

(b) KS(1,1)
o = zu,d

d2d

remaining loops closed, the closed-loop system would remain stable. We could measure multi-loop input disk margins by
injecting independent perturbations at all inputs to the plant if we wish to estimate the robustness to uncertainties at the inputs,
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(c) GS(1,1)
i = ze,d

d1d

(d) S(1,1)
o = ze,d

d2d

F I G U R E 9 d – d channel of transfer functions resulting from Kadc controller (blue) and Kerr controller (red), tuned with wind
turbine model linearized at 16 m/s, bounded by W–1

1 γ and W–1
2 γ (dashed, colored blue and red for Kadc and Kerr, respectively),

with open-loop cases for GSi (open-loop plant, G) and So (identity function, I) (black, dotted).
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multi-loop output disk margins by injecting independent perturbations at all outputs to the plant if we wish to estimate the
corresponding uncertainty at the plant outputs, or in the most conservative case we could estimate the multi-loop input/output
disk margin by injecting independent perturbations at all plant input and outputs.

The left plots of Fig. 10 show the variation in the gain and phase components of worst-case loop-at-a-time disk margins (i.e.
the worst loop-at-a-time disk margin over all d – d, d – q, q – d and q – q channels) for Kadc and Kerr controllers tuned with a
range of AWu values and wind turbine plants linearized at 12, 14, 16, 18, 20 and 22 m/s. The right plots show the equivalent
variation for the multi-loop input/output disk margins. We can see that the gain and phase components of the multi-loop disk
margin, the most conservative robustness metric shown, tend to be greater for Kadc controllers and also to increase with AWu .
There is a small reduction in robustness for controllers tuned with plants linearized at 14-22 m/s, but it does not appear to be
significant. We cannot draw as clear a conclusion from the worst case loop-at-a-time disk margin plots, for which there is not a
significant difference in robustness between Kadc and Kerr controllers and no general trend across linearizing wind-speeds or
values of AWu , although controllers tuned at 18 m/s do appear to be less robust than the others for high values of AWu in particular.
This highlights the importance of inspecting several metrics to investigate robustness. Note that, while we have studied the
robustness of controllers tuned for plants linearized at a range of wind speeds here, in this work we only implement those based
on a plant linearized at 16 m/s for nonlinear analysis. In future work, we intend to investigate the potential improvements in
using a gain-scheduled controller that utilizes controllers tuned across a range of wind speeds and interpolates between the
resulting IPC signals as the incoming wind speed changes.

F I G U R E 10 Robust stability margins for Kerr (solid line) and Kadc (dashed line) for increasing values of the gain AWu (darker
colors corresponding to higher AWu ).

5 NONLINEAR ANALYSIS

In order to more fully evaluate the performance and actuator activity of the tuned controllers, we run closed-loop simulations on
a model of the SUMR7 wind turbine using the open-source aero-servo-hydro-elastic wind turbine simulation tool OpenFAST.34
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Since the objective of the IPC controllers is to mitigate 0P and 3P loads in the non-rotating domain, the wind fields used in the
simulation studies are designed to incur these loads by including a high wind shear (causing an asymmetrical load on the rotor
that induces tilting, or d-axis moments) and high turbulence. TurbSim35 is used to generate 600-second time-series of turbulent
wind fields at mean wind speeds of 12, 14, 16, 18, 20, 22 m/s (R3 in Fig. 1), for 5 different seeds, with a Normal Turbulence
Model (NTM) of Class A turbulence intensity and a wind shear exponent of 0.2. In this section, we discuss the frequency content
of the loads measured in terms of the power spectral density (PSD) of the loads under inspection at the frequencies of interest
and the DELs and the actuator activity resulting from these nonlinear simulations. The measured change in PSD peaks and
DELs for loads of interest are averaged over all wind field seeds for each controller implementation tested. We compare these
metrics for the best-performing H∞-synthesized controllers for each of three ADC attenuation techniques tested: retuning with
greater AWu values, nonzero reference values for Md, and finite saturation values for [βipc

1 ,βipc
2 ,βipc

3 ].

5.1 Power Spectral Densities (PSDs) of Loads

The power spectral density [dB/Hz] of a time-series signal measures the power present in the signal at every frequency per
unit of frequency. The purpose of the tuned IPC controllers is to reduce the loads at 0P and 3P frequencies in the non-rotating
domain, corresponding to 1P and 2P frequencies in the rotating domain. We would expect then to see a reduction in the power of
relevant non-rotating loads at 0P and 3P frequencies and in the power of rotating loads at 1P and 2P frequencies. Fig. 11 shows
the percentage change, relative to the open-loop case, in the out-of-plane blade-root bending moment (a rotating load) at 1P
and 2P frequencies (left plots) and in the tower-top tilt and yaw (i.e. in the d and q coordinates, respectively) bending moment
(non-rotating loads) at 0P and 3P frequencies (middle and right plots, respectively), for the range of mean wind speeds of the
turbulent wind fields used in the nonlinear simulations.

Note that all IPC controllers result in a reduction in the 1P and 2P blade-root bending moments. This is to be expected, as a) it
is the tracking error of this load (MBC-transformed into the non-rotating domain) that is read as an input to the controllers and
b) all controllers, including the baseline (blue), K0, target the 0P loads in the transformed domain, which corresponds to this 1P
rotating load. However, it is only the tuned controllers (red, yellow, and purple, not including the baseline case), which result in
2P reductions in the blade-root bending moment and 0P reductions of the non-rotating loads for all mean wind speeds. For mean
wind speeds of 14 m/s and greater, all tuned controllers achieve approximately 80% reductions in the 1P blade-root bending
moment and 0P tower-top tilt and yaw bending moments.

Considering the 2P rotating load and 3P non-rotating loads (bottom plots), the tuned controllers result in a reduction in the
moments for all mean wind speeds, ranging between 20% to 45% for all loads and mean wind speeds (except for 14 m/s in the
tower-top tilt bending moment case, which still presents a reduction of approximately 10%). The retuning technique in particular
is consistently superior or as good as the other tuned controllers, in terms of 3P tower-top yaw bending moment reductions.

Fig. 12 compares the full PSD of the open-loop, baseline, and best-performing (in terms of PSD reductions at critical
frequencies, averaged over all loads/frequencies of interest) controller from the retuning set for a simulation with a mean wind
speed of 16 m/s. As expected, we can see that the rotating load (top plot) shows reduced peaks at 1P and 2P for the tuned
controller, and reductions at 0P and 3P for the non-rotating loads (middle and bottom plots).

5.1.1 Damage Equivalent Loads (DELs)

The damage-equivalent load metric for each wind turbine component is an estimate of the constant amplitude periodic load, that
if applied to a given wind turbine over its operating lifetime, would result in an accumulated damage equal to that caused by the
stochastic wind field loading over the same lifetime.36 It is computed by applying a rainflow counting algorithm to a collection
of nonlinear simulations conducted for wind conditions of interest.37

Fig. 13 shows the percentage change in DELs relative to the open-loop case for different rotating (out-of-plane blade-root
bending moment) and non-rotating (tower-top tilt and yaw bending moment) loads for the baseline IPC controller (blue) and
the best-performing (in terms of greatest DEL reduction) tuned full-order controllers using the AWu retuning (red), nonzero
output reference (yellow), and finite control input saturation (purple) techniques to penalize actuator activity at each mean wind
speed. It also shows the equivalent change for ADC for the baseline and tuned cases (top-right plot). Note that the left y-axis
corresponds to the baseline (blue) controller, while the right y-axis corresponds to the tuned (red, yellow and purple) controllers.



18 AOIFE HENRY ET AL

F I G U R E 11 Percentage change in PSD at frequencies of interest for different rotating and non-rotating loads for baseline
and best-performing controllers (in terms of mean PSD reduction over all loads and frequencies of interest) generated from the
baseline (blue), retuning (red), nonzero reference (yellow), and finite saturation (purple) techniques, averaged over 5 seeds of
turbulent wind fields with varying mean wind speeds.

We can see that all controllers result in a reduction in the DEL for the blade-root bending moment, with all three tuned
controllers achieving the greatest reduction of up to 5 – 7% in the case of the 22 m/s mean wind speed. The results for the
tower-top tilt bending moment DEL are more ambiguous, varying over mean wind speeds, with the tuned controllers sometimes
presenting increases of up to 16%, although this is notably less than the corresponding increases for the baseline case over
most mean wind speeds. Looking at the change in DELs for the tower-top yaw bending moment, we see that only the tuned
controllers result in negligible changes, whereas the baseline controller incurs 5 – 10% increases for all mean wind speeds. It
would appear that reductions in the frequencies of interest, namely 0P and 3P, in the non-rotating domain using the blade-root
bending moment tracking error as an input to the controller are likely to result in reductions in power spectral density (PSD) at
these frequencies, but that this may not translate to reductions in the DELs associated with non-rotating components (tower-top
tilt and yaw bending moments).

5.2 Actuator Activity Analysis

A secondary objective of the IPC controllers designed in this work is to limit the actuator activity, or ADC, of the blade-pitch
actuators. Note that ADC will always increase with the implementation of an IPC controller relative to the open-loop case, but
that we would like to keep this value to the minimum necessary to achieve our load attenuation objectives. The top right plot
in Fig. 13 shows that the baseline case results in the greatest increase of up to 500% in ADC relative to the open-loop case,
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F I G U R E 12 PSD of open-loop (dotted, black), baseline (blue, solid), and best-performing (in terms of mean PSD reduction
over all loads under inspection) tuned controllers (red, solid) for retuning technique of different loads under a sample turbulent
wind field with mean wind speed of 16 m/s

compared to increases of less than 4% for all tuned controllers. The retuning technique results in the greatest ADC attenuation,
while the finite saturation technique results in the least attenuation, although it is still significantly superior to the baseline case.

Fig. 14 shows the time-series variation in the blade-pitch angle (the sum of the collective and individual pitch control
commands), β1, and the its rate of change, dβ1

dt , for blade 1 over a single rotation of the rotor (corresponding to a 360◦ revolution
of the azimuth angle, θ, in the top plot), for the baseline (blue) controller and controllers generated from the retuning (red),
nonzero reference (yellow), and finite saturation (purple) techniques. Looking at the β1 (middle) plot, we see that the baseline,
retuning, and nonzero reference controllers all result in IPC signals that are in phase, with the greatest amplitude for the retuned
controller and least amplitude for the baseline controller. In contrast, the IPC signal for the finite saturation case seems to be
out-of-phase with the others, showing how saturation can impact the shape of the control input waveform necessary to mitigate
periodic load signals. The rate-of-change in the actuation signal, dβ1

dt (bottom plot) presents noise in the case of the baseline
controller whereas the tuned controllers are smoother. All three tuned controllers are well within the blade-pitch rate-of-change
bounds of [–4, 5]◦/s imposed on the turbine.

6 CONCLUSIONS

In conclusion, it is found that all three implementations of H∞-synthesized multivariable controllers with ADC mitigation
techniques are superior in terms of PSD attenuation of rotating and non-rotating loads at targeted frequencies, DEL reduction of
rotating loads and ADC mitigation, compared to the baseline SISO PI controller.
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F I G U R E 13 Percentage change in DELs and ADCs under turbulent wind fields with mean wind speeds of
12, 14, 16, 18, 20, 22 m/s for baseline, and best-performing controllers for varying AWu , varying M⋆

d and β1 cases (in terms of
greatest decrease or least increase in DEL and ADC relative to open-loop case)

A reduction of approximately 80% is achieved for the 1P out-of-plane blade-root and 0P tower-top tilt and yaw bending
moments for all mean wind speeds included in the set of turbulent wind fields run in simulation; and a reduction of approximately
20-45% is achieved for the 2P out-of-plane blade-root bending moment and 3P tower-top tilt and yaw bending moments for all
mean wind speeds.

In terms of limiting ADC, the retuning approach proves to result in the least increase relative to the open-loop case across all
mean wind speeds run in simulation. We can conclude that all three methods succeed in significantly reducing ADC compared to
the baseline case, with increases of less than 4% compared to 500% in the baseline case. It is found, however, that the retuning
approach is the most effective, achieving increases of less than 2% for all mean wind speeds. The study of the controllers
synthesized for a sweep of weighting functions gains suggests that the controller that induces the lowest ADC is also the most
robust controller in terms of multi-loop disk margin.

It is noteworthy that while a tuned controller may perform well in terms of PSD attenuation, that this does not necessarily
translate to reduction in DELs for the same components. This may be a result of additional harmonics present in the loads
beyond 0P and 3P, or it may be that the IPC actuator activity introduces additional fatigue. Nonetheless, the tuned controllers do
result in the greatest decreases in DELs associated with the out-of-plane blade-root bending moment ranging from 2 – 7% for
different mean wind speeds run in simulation, compared to decreases of approximately 0.5 – 3.5% for the baseline controller.

Further investigation of the H∞-tuned IPC presented in this work is warranted to fine-tune the performance and to thoroughly
test it. Some goals for future work include:
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F I G U R E 14 Time-series plot of θ, β1, dβ1
dt under turbulent wind field with mean wind speed of 16 m/s for baseline and

tuned controllers for retuning, nonzero reference, and finite saturation techniques

• Investigation into the reason that tuned controllers succeed in reducing PSDs at targeted frequencies but fail to achieve the
same significant reductions in DELs of non-rotating components.

• Tuning a multivariable structured controller, such as a series combination of PI regulators and inverse notch filters, that
approximates the optimized full-order controller via H∞-synthesis.

• Comparing the performance, robustness, and actuator activity of a controller tuned at a single wind speed with a
gain-scheduled controller tuned at several wind speeds.

• Validating the tuned controllers on a scaled test wind turbine.
• Open-source release of a user-friendly framework for the purposes of auto-tuning IPCs for any given wind turbine model.
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